Abstract

Thermodynamics, the science of energy interactions, governs the direction of processes found in nature. While the subject finds wide applications in science and technology, its connection to biological sciences and in particular to bio-engineering is becoming increasingly important. In this work, after a brief introduction to the fundamental concepts in thermodynamics, we focus on its application in human physiology. A review of application of thermodynamics to the interaction between human body and environment is presented. Research works on biological systems such as the nervous system and the cardiovascular systems are summarized. The thermodynamics of metabolism is reviewed, and finally, the role of the subject in understanding and combating diseases is highlighted.

References

1.
Edsall
,
J. T.
,
1993
, “
Master of Metabolic Cycles
,”
Nature
,
366
(
6454
), pp.
417
418
.10.1038/366417a0
2.
Haynie
,
D. T.
,
2008
,
Biological Thermodynamics
,
Cambridge University Press
,
New York
.
3.
Ubbelohde, A., 1963,
Man End Energy
, Pelican Press, Great Britain, UK.
4.
Pippard
,
A. B.
,
1957
,
Elements of Classical Thermodynamics
,
Cambridge University Press
,
Cambridge, UK
.
5.
Bunn
,
E. F.
,
2009
, “
Evolution and the Second Law of Thermodynamics
,”
Am. J. Phys.
,
77
(
10
), pp.
922
925
.10.1119/1.3119513
6.
Bardeen
,
J. M.
,
Carter
,
B.
, and
Hawking
,
S. W.
,
1973
, “
The Four Laws of Black Hole Mechanics
,”
Commun. Math. Phys.
,
31
(
2
), pp.
161
170
.10.1007/BF01645742
7.
Hawking
,
S.
,
1988
,
A Brief History of Time
,
Bantam Doubleday Dell Publishing Group
,
UK
.
8.
Choi
,
J.-H.
, and
Loftness
,
V.
,
2012
, “
Investigation of Human Body Skin Temperatures as a Bio-Signal to Indicate Overall Thermal Sensations
,”
Build. Environ
,
58
, pp.
258
269
.10.1016/j.buildenv.2012.07.003
9.
Hall
,
J. E.
,
2016
,
Guyton and Hall Textbook of Medical Physiology
, 13thed.,
Elsevier
, Amsterdam, The Netherlands.
10.
Djongyang
,
N.
,
Tchinda
,
R.
, and
Njomo
,
D.
,
2010
, “
Thermal Comfort: A Review Paper
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2626
2640
.10.1016/j.rser.2010.07.040
11.
Yi
,
L.
,
Fengzhi
,
L.
,
Yingxi
,
L.
, and
Zhongxuan
,
L.
,
2004
, “
An Integrated Model for Simulating Interactive Thermal Processes in Humaneclothing System
,”
J. Therm. Biol.
,
29
(
7–8
), pp.
567
575
.10.1016/j.jtherbio.2004.08.071
12.
Fiala
,
D.
,
Lomas
,
K. J.
, and
Stohrer
,
M.
,
1999
, “
A Computer Model of Human Thermoregulation for a Wide Range of Environmental Conditions: The Passive System
,”
J. Appl. Physiol.
,
87
(
5
), pp.
1957
1972
.10.1152/jappl.1999.87.5.1957
13.
Fiala
,
D.
,
Lomas
,
K. J.
, and
Stohrer
,
M.
,
2001
, “
Computer Prediction of Human Thermoregulatory and Temperature Responses to a Wide Range of Environmental Conditions
,”
Int. J. Biometeorol.
,
45
(
3
), pp.
143
159
.10.1007/s004840100099
14.
Havenith, G., and Fiala, D., 2015, “Thermal Indices and Thermophysiological Modelling for Heat Stress,”
Compr. Physiol.
, 6(1), pp. 255–302.10.1002/cphy.c140051
15.
Huizenga
,
C.
,
Hui
,
Z.
, and
Arens
,
E.
,
2001
, “
A Model of Human Physiology and Comfort for Assessing Complex Thermal Environments
,”
Build. Environ.
,
36
(
6
), pp.
691
699
.10.1016/S0360-1323(00)00061-5
16.
Zhang
,
H.
,
Huizenga
,
C.
,
Arens
,
E.
, and
Yu
,
T.
,
2001
, “
Considering Individual Physiological Differences in a Human Thermal Model
,”
J. Therm. Biol.
,
26
(
4–5
), pp.
401
408
.10.1016/S0306-4565(01)00051-1
17.
Tanabe
,
S/-I.
,
Kobayashi
,
K.
,
Nakano
,
J.
,
Ozeki
,
Y.
, and
Konishi
,
M.
,
2002
, “
Evaluation of Thermal Comfort Using Combined Multi-Node Thermoregulation (65MN) and Radiation Models and Computational Fluid Dynamics (CFD)
,”
Energy Build.
,
34
(
6
), pp.
637
646
.10.1016/S0378-7788(02)00014-2
18.
Ivanov
,
K. P.
,
2006
, “
The Development of the Concepts of Homeothermy and Thermoregulation
,”
J. Therm. Biol.
,
31
(
1–2
), pp.
24
29
.10.1016/j.jtherbio.2005.12.005
19.
Kingma
,
B. R. M.
,
Schellen
,
L.
,
Frijns
,
A. J. H.
, and
van Marken Lichtenbelt
,
W. D.
,
2012
, “
Thermal Sensation: A Mathematical Model Based on Neurophysiology
,”
Indoor Air
,
22
(
3
), pp.
253
262
.10.1111/j.1600-0668.2011.00758.x
20.
Schweiker
,
M.
,
Kingma
,
B. R. M.
, and
Wagner
,
A.
,
2017
, “
Evaluating the Performance of Thermal Sensation Prediction With a Biophysical Model
,”
Indoor Air
,
27
(
5
), pp.
1012
1021
.10.1111/ina.12372
21.
Jeffery
,
K.
,
Pollack
,
R.
, and
Rovelli
,
C.
,
2019
, “
On the Statistical Mechanics of Life: Schrödinger Revisited
,”
Entropy
,
21
(
12
), p.
1211
.10.3390/e21121211
22.
Demetrius
,
L.
,
2000
, “
Thermodynamics and Evolution
,”
J. Theor. Biol.
,
206
(
1
), pp.
1
16
.10.1006/jtbi.2000.2106
23.
Schrödinger
,
E.
,
1944
,
What is Life
?,
Cambridge University Press
,
Cambridge, UK
.
24.
Schneider
,
E. D.
, and
Kay
,
J. J.
,
1994
, “
Life as a Manifestation of the Second Law of Thermodynamics
,”
Mathl. Comput. Modell.
,
19
(
6–8
), pp.
25
48
.10.1016/0895-7177(94)90188-0
25.
Bejan
,
A.
,
2015
, “
Constructal Law: Optimization as Design Evolution
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061003
.10.1115/1.4029850
26.
Bejan
,
A.
,
2016a
,
The Physics of Life: The Evolution of Everything
,
St. Martin's Press
,
New York
.
27.
Bejan
,
A.
, and
Errera
,
M. R.
,
2016
, “
Complexity, Organization, Evolution, and Constructal Law
,”
J. App. Phys.
,
119
(
7
), p.
074901
.10.1063/1.4941554
28.
Simkin
,
A. J.
,
López-Calcagno
,
P. E.
, and
Raines
,
C. A.
,
2019
, “
Feeding the World: Improving Photosynthetic Efficiency for Sustainable Crop Production
,”
J. Exp. Bot.
,
70
(
4
), pp.
1119
1140
.10.1093/jxb/ery445
29.
Popovic
,
M.
,
2019
, “
Thermodynamic Properties of Microorganisms: Determination and Analysis of Enthalpy, Entropy, and Gibbs Free Energy of Biomass, Cells and Colonies of 32 Microorganism Species
,”
Heliyon
,
5
(
6
), p.
e01950
.10.1016/j.heliyon.2019.e01950
30.
Schreiber
,
A.
, and
Gimbel
,
S.
,
2010
, “
Evolution and the Second Law of Thermodynamics: Effectively Communicating to Non-Technicians
,”
Evo. Edu. Outreach
,
3
(
1
), pp.
99
106
.10.1007/s12052-009-0195-3
31.
Turner
,
P.
,
Nottale
,
L.
,
Zhao
,
J.
, and
Pesquet
,
E.
,
2020
, “
New Insights Into the Physical Processes That Underpin Cell Division and the Emergence of Different Cellular and Multicellular Structures
,”
Prog. Biophys. Mol. Biol.
,
150
, pp.
13
42
.10.1016/j.pbiomolbio.2019.04.006
32.
Arens
,
E.
, and
Zhang
,
H.
,
2006
, “
The Skin's Role in Human Thermoregulation and Comfort
,”
Thermal and Moisture Transport in Fibrous Materials
,
N.
Pan
and
P.
Gibson
, eds.,
Woodhead Publishing Ltd
., Cambridge, UK, pp.
560
602
.
33.
Joyner
,
M. J.
, and
Casey
,
D. P.
,
2015
, “
Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs
,”
Physiol. Rev.
,
95
(
2
), pp.
549
601
.10.1152/physrev.00035.2013
34.
Fanger
,
P.
,
1970
,
Thermal Comfort Analysis and Applications in Environmental Engineering
,
Copenhagen Danish Technical Press
,
Copenhagen, Denmark
.
35.
Katic
,
K.
,
Li
,
R.
, and
Zeiler
,
W.
,
2016
, “
Thermophysiological Models and Their Applications: A Review
,”
Build. Environ.
,
106
, pp.
286
300
.10.1016/j.buildenv.2016.06.031
36.
Schellen
,
L.
,
Loomans
,
M. G. L. C.
,
Kingma
,
B. R. M.
,
de Wit
,
M. H.
,
Frijns
,
A. J. H.
, and
van Marken Lichtenbelt
,
W. D.
,
2013
, “
The Use of a Thermophysiological Model in the Built Environment to Predict Thermal Sensation
,”
Build. Environ.
,
59
, pp.
10
22
.10.1016/j.buildenv.2012.07.010
37.
Tang
,
Y.
,
He
,
Y.
,
Shao
,
H.
, and
Ji
,
C.
,
2016
, “
Assessment of Comfortable Clothing Thermal Resistance Using a Multi-Scale Human Thermoregulatory Model
,”
Int. J. Heat. Mass Transfer
,
98
, pp.
568
583
.10.1016/j.ijheatmasstransfer.2016.03.030
38.
Fiala
,
D.
,
Havenith
,
G.
,
Br€Ode
,
P.
,
Kampmann
,
B.
, and
Jendritzky
,
G.
,
2012
, “
UTCI-Fiala Multimode Model of Human Heat Transfer and Temperature Regulation
,”
Int. J. Biometeorol.
,
56
(
3
), pp.
429
441
.10.1007/s00484-011-0424-7
39.
Parsons
,
K.
,
2003
,
Human Thermal Environments: The Effects of Hot, Moderate and Cold Environments on Human Health, Comfort and Performance
, 2nd ed.,
Taylor & Francis
,
London & New York
.
40.
Taleghani
,
M.
,
Tenpierik
,
M.
,
Kurvers
,
S.
, and
van den Dobbelsteen
,
A.
,
2013
, “
A Review Into Thermal Comfort in Buildings
,”
Renewable Sustainable Energy Rev.
,
26
, pp.
201
215
.10.1016/j.rser.2013.05.050
41.
Zhu
,
L.
,
Schappeler
,
T.
,
Cordero-Tumangday
,
C.
, and
Rosengart
,
A. J.
,
2009
, “
Thermal Interactions Between Blood and Tissue: Development of a Theoretical Approach in Predicting Body Temperature During Blood Cooling/Rewarming
,”
Adv. Numer. Heat Transfer
,
3
, pp.
197
219
.https://www.researchgate.net/publication/329483057_Thermal_interactions_between_blood_and_tissue_Development_of_a_theoretical_approach_in_predicting_body_temperature_during_blood_cooling_and_Rewarming
42.
Zhu
,
L.
,
2010
, “
Recent Developments in Biotransport
,”
ASME J. Therm. Sci. Eng. App.
,
2
(
4
), p.
040801
.
43.
Shrivastava
,
D.
, and
Vaughan
,
J. T.
,
2009
, “
A Generic Bioheat Transfer Thermal Model for a Perfused Tissue
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
74506
.10.1115/1.3127260
44.
Bhowmik
,
A.
,
Repaka
,
R.
,
Mishra
,
S. C.
, and
Mitra
,
K.
,
2015
, “
Thermal Assessment of Ablation Limit of Subsurface Tumor During Focused Ultrasound and Laser Heating
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011012
.10.1115/1.4003511
45.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
46.
Dutta
,
J.
,
Kundu
,
B.
, and
Yook
,
S. J.
,
2021
, “
Three-Dimensional Thermal Assessment in Cancerous Tumors Based on Local Thermal Non-Equilibrium Approach for Hyperthermia Treatment
,”
Int. J. Therm. Sci.
,
159
, p.
106591
.10.1016/j.ijthermalsci.2020.106591
47.
Kundu
,
B.
,
2016
, “
Exact Analysis for Propagation of Heat in a Biological Tissue Subject to Different Surface Conditions for Therapeutic Applications
,”
Appl. Math. Comput.
,
285
, pp.
204
216
.10.1016/j.amc.2016.03.037
48.
Zakharov
,
M.
, and
Sadovsky
,
M.
,
2013
, “
The Role of Blood Circulatory System in Thermal Regulation of Animals Explained by Entropy Production Analysis
,”
arXiv: Other Quant. Biol.
, pp.
1
22
. https://www.researchgate.net/publication/255965805_The_role_of_blood_circulatory_system_in_thermal_regulation_of_animals_explained_by_entropy_pr
49.
Isawa
,
K.
, and
Shukuya
,
M.
,
2016
, “
Sensitivity Numerical Analysis of Human Body Exergy Balance Under an Unsteady-State Thermal Environment—Behavioral Adaptation Induced by Undesirable Cold Storage by Building Envelope in Winter
,”
Health
,
08
(
08
), pp.
737
748
.10.4236/health.2016.88077
50.
Vallez
,
L. J.
,
Plourde
,
B. D.
, and
Abraham
,
J. P.
,
2016
, “
A New Computational Thermal Model of the Whole Human Body: Applications to Patient Warming Blankets
,”
Numer. Heat Transfer A
,
69
(
3
), pp.
227
241
.10.1080/10407782.2015.1080573
51.
Gorman
,
J. M.
,
Regnier
,
M.
, and
Abraham
,
J. P.
,
2020
, “
Heat Exchange Between the Human Body and the Environment: A Comprehensive, Multi-Scale Numerical Simulation
,”
Adv. Heat Transfer
, 52, pp.
1
151
.10.1016/bs.aiht.2020.07.001
52.
Rahman
,
M. A.
,
2007
, “
A Novel Method for Estimating Entropy Generation Rate in Human Body
,”
Therm. Sci.
,
11
(
1
), pp.
75
92
.10.2298/TSCI0701075R
53.
Silva
,
C.
, and
Annamalai
,
K.
,
2008
, “
Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level
,”
Entropy
,
10
(
2
), pp.
100
123
.10.3390/entropy-e10020100
54.
Silva
,
C.
, and
Annamalai
,
K.
,
2009
, “
Entropy Generation and Human Aging: Lifespan Entropy and Effect of Diet Composition and Caloric Restriction Diets
,”
J. Thermodyn.
,
2009
, pp.
1
10
.10.1155/2009/186723
55.
Aoki
,
I.
,
1989
, “
Entropy Flow and Entropy Production in the Human Body in Basal Conditions
,”
J. Theor. Biol.
,
141
(
1
), pp.
11
21
.10.1016/S0022-5193(89)80004-9
56.
Shukuya
,
M.
,
2009
, “
Exergy Concept and Its Application to the Built Environment
,”
Bldg. Environ.
,
44
(
7
), pp.
1545
1550
.10.1016/j.buildenv.2008.06.019
57.
Simone
,
A.
,
Kolarik
,
J.
,
Iwamatsu
,
T.
,
Asada
,
H.
,
Dovjak
,
M.
,
Schellen
,
L.
,
Shukuya
,
M.
, and
Olesen
,
B. W.
,
2011
, “
A Relation Between Calculated Human Body Exergy Consumption Rate and Subjectively Assessed Thermal Sensation
,”
Energy Build.
,
43
(
1
), pp.
1
9
.10.1016/j.enbuild.2010.08.007
58.
Mady
,
C. E. K.
,
Ferreira
,
M. S.
,
Yanagihara
,
J. I.
,
Oliveira Jr
,
S.
, and
Saldiva
,
P. H. N.
,
2011
, “
Second Law of Thermodynamics and Human Body
,”
Therm. Eng.
,
10
(
1–2
), pp.
88
95
.10.5380/reterm.v10i1-2.61968
59.
Mady
,
C. E. K.
,
Ferreira
,
M. S.
,
Yanagihara
,
J. I.
,
Saldiva
,
P. H. N.
, and
de Oliveira Junior
,
S.
,
2012
, “
Modeling the Exergy Behavior of Human Body
,”
Energy
,
45
(
1
), pp.
546
553
.10.1016/j.energy.2012.02.064
60.
Annamalai
,
K.
, and
Silva
,
C.
,
2012
, “
Entropy Stress and Scaling of Vital Organs Over Life Span Based on Allometric Laws
,”
Entropy
,
14
(
12
), pp.
2550
2577
.10.3390/e14122550
61.
Caliskan
,
H.
,
2013
, “
Energetic and Exergetic Comparison of the Human Body for the Summer Season
,”
Energy Conv. Magmt.
,
76
, pp.
169
176
.10.1016/j.enconman.2013.07.045
62.
Mady
,
C. E. K.
,
Henriques
,
I. B.
, and
de Oliveira Junior
,
S.
,
2013
, “
Exergy Analysis of Human Body and Lifespan: A First Approach
,”
22nd International Congress of Mechanical Engineering (COBEM 2013)
, RibeirãoPreto, SP, Brazil, Nov. 3–7.https://www.researchgate.net/publication/260553406_Exergy_analysis_of_human_body_and_lifespan_a_fi_rst_approach
63.
Mady
,
C. E. K.
,
Henriques
,
I. B.
, and
de Oliveira Junior
,
S.
,
2014
, “
Method to Perform Exergy Analysis to the Human Body and Daily Exergy Balance
,”
15th Brazilian Congress of Thermal Sciences and Engineering
, Belém, PA, Brazil, Nov. 10–13.https://www.researchgate.net/publication/278963312_METHOD_TO_PERFORM_EXERGY_ANALYSIS_TO_THE_HUMAN_BODY_AND_DAILY_EXERGY_BALANCE
64.
Dovjak
,
M.
,
Shukuya
,
M.
, and
Krainer
,
A.
,
2015
, “
Exergetic Issues of Thermoregulation Physiology in Different Climates
,”
Int. J. Exergy
,
17
(
4
), pp.
412
432
.10.1504/IJEX.2015.071558
65.
Dovjak
,
M.
,
Shukuya
,
M.
, and
Krainer
,
A.
,
2015
, “
Connective Thinking on Building Envelope—Human Body Exergy Analysis
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1015
1025
.10.1016/j.ijheatmasstransfer.2015.07.021
66.
Schweiker
,
M.
,
Kolarik
,
J.
,
Dovjak
,
M.
, and
Shukuya
,
M.
,
2016
, “
Unsteady-State Human-Body Exergy Consumption Rate and Its Relation to Subjective Assessment of Dynamic Thermal Environments
,”
Energy Build.
,
116
, pp.
164
180
.10.1016/j.enbuild.2016.01.002
67.
Prek
,
M.
,
2005
, “
Thermodynamic Analysis of Human Heat and Mass Transfer and Their Impact on Thermal Comfort
,”
Int. J. Heat Mass Transfer
,
31
(
5
), pp.
732
743
.10.1016/j.ijheatmasstransfer.2004.09.006
68.
Prek
,
M.
,
2006
, “
Thermodynamical Analysis of Human Thermal Comfort
,”
Energy
,
31
(
5
), pp.
732
743
.10.1016/j.energy.2005.05.001
69.
Prek
,
M.
, and
Butala
,
V.
,
2017
, “
Comparison Between Fanger's Thermal Comfort Model and Human Exergy Loss
,”
Energy
,
138
, pp.
228
237
.10.1016/j.energy.2017.07.045
70.
Henriques
,
I. B.
,
Mady
,
C. E. K.
, and
de Oliveira Junior
,
S.
,
2017
, “
Assessment of Thermal Comfort Conditions During physical Exercise by Means of Exergy Analysis
,”
Energy
,
128
, pp.
609
617
.10.1016/j.energy.2017.04.033
71.
Buyak
,
N. A.
,
Deshko
,
V. I.
, and
Sukhodub
,
I. O.
,
2017
, “
Buildings Energy Use and Human Thermal Comfort According to Energy and Exergy Approach
,”
Energ. Build.
,
146
, pp.
172
181
.10.1016/j.enbuild.2017.04.008
72.
Garcia
,
M. M.
,
Une
,
R. Y.
,
de Oliveira Junior
,
S.
, and
Mady
,
C. E. K.
,
2018
, “
Exergy Analysis and Human Body Thermal Comfort Conditions: Evaluation of Different Body Compositions
,”
Entropy
,
20
(
4
), p.
265
.10.3390/e20040265
73.
Guo
,
H.
,
Luo
,
Y.
,
Meggers
,
F.
, and
Simonetti
,
M.
,
2019
, “
Human Body Exergy Consumption Models' Evaluation and Their Sensitivities Towards Different Environmental Conditions
,”
Energy
,
183
, pp.
1075
1088
.10.1016/j.energy.2019.05.045
74.
Turhan
,
C.
, and
Akkurt
,
G. G.
,
2019
, “
The Relation Between Thermal Comfort and Human-Body Exergy Consumption in a Temperate Climate Zone
,”
Energy Build.
,
205
, p.
109548
.10.1016/j.enbuild.2019.109548
75.
Maino
,
G.
, and
Lucia
,
U.
,
2018
, “
A Thermodynamic Approach to the Microclimate Environment of Museums
,”
Phys. A
, 517, pp.
66
72
.10.1016/j.physa.2018.08.121
76.
Deshko
,
V.
,
Buyak
,
N.
,
Bilous
,
I.
, and
Voloshchuk
,
V.
,
2020
, “
Reference State and Exergy Based Dynamics Analysis of Energy Performance of the “Heat Source - Human - Building Envelope” System
,”
Energy
,
200
, p.
117534
.10.1016/j.energy.2020.117534
77.
Patel
,
A. K.
, and
Rajput
,
S. P. S.
,
2020
, “
Reference State and Exergy Based Dynamics Analysis of Energy Performance of the “Heat Source—Human—Building Envelope” System, “Parametric Analysis of Energy and Exergy of the Human Body in Indian Conditions
,”
Int. J. Exergy,
33(3), pp.
328
343
.10.1504/IJEX.2020.110873
78.
Bit
,
A.
, and
Chattopadhyay
,
H.
,
2014
, “
Numerical Investigations of Pulsatile Flow in Stenosed Artery
,”
Acta Bioeng. Biomech.
,
16
(
4
), pp.
33
44
.https://pubmed.ncbi.nlm.nih.gov/25598070/#:~:text=Method%3A%20In%20this%20work%2C%20a,pulsating%20profile%20at%20the%20inlet.&text=Two%20different%20patient%2D%20specific%20pulsatile,from%2025%25%20to%2080%25.
79.
Bit
,
A.
, and
Chattopadhyay
,
H.
,
2014
, “
Assessment of Rheological Models for Prediction of Transport Phenomena in Stenosed Artery
,”
Prog. Comput. Fluid Dyn.
,
14
(
6
), pp.
363
374
.10.1504/PCFD.2014.065468
80.
Bit
,
A.
,
Alblawi
,
A.
,
Chattopadhyay
,
H.
,
Quais
,
Q. A.
,
Benim
,
A. C.
,
Rahimi-Gorji
,
M.
, and
Do
,
H. T.
,
2020
, “
Three Dimensional Numerical Analysis of Hemodynamic of Stenosed Artery Considering Realistic Outlet Boundary Conditions
,”
Comput. Meth. Prog. Biomed.
,
185
, p.
105163
.10.1016/j.cmpb.2019.105163
81.
Prokop
,
R. M.
,
Chen
,
P.
,
Garg
,
A.
, and
Neumann
,
A. W.
,
1999
, “
Thermodynamic Modelling of the Lung Mechanics
,”
Colloids Surf. B: Biointerfaces
,
13
(
2
), pp.
59
73
.10.1016/S0927-7765(98)00105-2
82.
Bit
,
A.
,
Chattopadhay
,
H.
, and
Nag
,
D.
,
2009
, “
Study of Airflow in the Trachea of a Bronchopulmonary Patient Using CT Data
,”
Ind. J. Biomech., Spec.
, pp.
31
36
. https://www.semanticscholar.org/paper/Study-of-Airflow-in-the-Trachea-of-a-Patient-using-Bit-Chattyopadhay/601d1d78078e80e25bd14b8ba998319908e7b7f6
83.
Reis
,
A. H.
,
Miguel
,
A. F.
, and
Aydin
,
M.
,
2004
, “
Constructal Theory and Flow Architecture in the Lungs
,”
Med. Phys.
,
31
(
5
), pp.
1135
1140
.10.1118/1.1705443
84.
Dutta
,
A.
,
Chattopadhyay
,
H.
, and
Biswas
,
A.
,
2019a
, “
A Comparative Study on the Entropy Generation in the Human Respiratory Tract Based on Hess-Murray Law and Weibel Experimented Result
,”
J. Mech. Med. Biol.
,
19
(
06
), p.
1950046
.10.1142/S0219519419500465
85.
Dutta
,
A.
,
Chattopadhyay
,
H.
,
Yasmin
,
H.
, and
Gorji
,
M. R.
,
2019b
, “
Entropy Generation in the Human Lung Due to Effect of Psychrometric Condition and Friction in the Respiratory Tract
,”
Comput. Meth. Prog. Biomed.
,
180
, p.
105010
.10.1016/j.cmpb.2019.105010
86.
Min
,
K.
,
2015
, “
Entropy Change of Lungs: Determinant of Static Properties of the Lungs
,”
Appl. Math
,
06
(
08
), pp.
1200
1207
.10.4236/am.2015.68111
87.
Oliveira
,
C. L. N.
,
Araújo
,
A. D.
,
Bates
,
J. H. T.
,
Andrade
,
J. S.
, Jr.
, and
Suki
,
B.
,
2016
, “
Entropy Production and the Pressure–Volume Curve of the Lung
,”
Front. Physiol.
,
7
, p.
73
.10.3389/fphys.2016.00073
88.
Gattinoni
,
L.
,
Tonetti
,
T.
,
Cressoni
,
M.
,
Cadringher
,
P.
,
Herrmann
,
P.
,
Moerer
,
O.
,
Protti
,
A.
,
Gotti
,
M.
,
Chiurazzi
,
C.
,
Carlesso
,
E.
,
Chiumello
,
D.
, and
Quintel
,
M.
,
2016
, “
Ventilator Related Causes of Lung Injury: The Mechanical Power
,”
Intensive Care Med.
,
42
(
10
), pp.
1567
1575
.10.1007/s00134-016-4505-2
89.
Çatak
,
J.
,
Ozilgen
,
M.
, and
Yilmaz
,
B.
,
2018a
, “
Thermodynamic Analysis of Human Respiratory (Diaphragm) Skeletal Muscles
,”
Eur. Respir. J.
,
52
(
suppl 62
), p.
PA2447
.10.1183/13993003.congress-2018.PA2447
90.
Çatak
,
J.
,
Develi
,
E.
, and
Bayram
,
S.
,
2019
, “
Comparison the Work of Breathing Between Healthy and Obese by Thermodynamic Analysis
,”
Eur. Respir. J.
,
54
(
suppl 63
), p.
PA753
10.1183/13993003.congress-2019.PA753.
91.
Dutta
,
A.
, and
Chattopadhyay
,
H.
,
2020
, “
Exergetic Analysis of Human Respiratory System Including Effect of Age and Gender
,”
Int. J. Exergy
,
31
(
4
), pp.
370
385
.10.1504/IJEX.2020.107194
92.
Dutta
,
A.
, and
Chattopadhyay
,
H.
,
2021
, “
Performance Analysis of Human Respiratory System Based on Second Law of Thermodynamics
,”
J. Therm. Biol.
,
96
(
1
), p.
102862
.10.1016/j.jtherbio.2021.102862
93.
Uehara
,
M.
,
Sakane
,
K. K.
, and
Bertolotti
,
S. A.
,
2008
, “
Thermodynamics of the Heart: Relation Between Cardiac Output and Oxygen Consumption
,”
Am. J. Phys.
,
76
(
6
), pp.
566
569
.10.1119/1.2825395
94.
Dini
,
F. L.
,
Guarini
,
G.
,
Morrone
,
D.
, and
Marzilli
,
M.
,
2012
, “
The Second Law of Thermodynamics and the Heart
,”
Future Cardiol.
,
8
(
5
), pp.
697
706
.10.2217/fca.12.45
95.
Henriques
,
I. B.
,
Mady
,
C. E. K.
, and
de Oliveira Junior
,
S.
,
2015
, “
Exergy Model of the Human Heart
,”
Proceedings of ECOS 2015 - The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
, Pau, France, June 30–July 3.
96.
Henriques
,
I. B.
,
Mady
,
C. E. K.
, and
de Oliveira Junior
,
S.
,
2016
, “
Exergy Model of the Human Heart
,”
Energy
,
117
, pp.
612
619
.10.1016/j.energy.2016.02.150
97.
Dutta
,
A.
, and
Chattopadhyay
,
H.
,
2021
, “
Performance Analysis of Human Cardiorespiratory System Based on the Second Law of Thermodynamics
,”
Int. J. Exergy
,
34
(
1
), pp.
29
49
.10.1504/IJEX.2021.112034
98.
Kirkaldy
,
J. S.
,
1965
, “
Thermodynamics of the Human Brain
,”
Biophys. J.
,
5
(
6
), pp.
981
986
.10.1016/S0006-3495(65)86763-7
99.
Balendiran
,
K. G.
,
Schnutgen
,
F.
,
Scapin
,
G.
,
Borchers
,
T.
,
Xhong
,
N.
,
Lim
,
K.
,
Godbout
,
R.
,
Spener
,
F.
, and
Sacchettini
,
J. C.
,
2000
, “
Crystal Structure and Thermodynamic Analysis of Human Brain Fatty Acid-Binding Protein
,”
J. Biol. Chem.
,
275
(
35
), pp.
27045
27054
.10.1016/S0021-9258(19)61478-X
100.
Varpula
,
S.
,
Annila
,
A.
, and
Beck
,
C.
,
2013
, “
Thoughts About Thinking: Cognition According to the Second Law of Thermodynamics
,”
Adv. Stud. Biol.
,
5
(
3
), pp.
135
149
.10.12988/asb.2013.13012
101.
Collell
,
G.
, and
Fauquet
,
J.
,
2015
, “
Brain Activity and Cognition: A Connection From Thermodynamics and Information Theory
,”
Front. Psychol.
,
6
, p.
818
.10.3389/fpsyg.2015.00818
102.
Wang
,
T.
,
Mužić
,
T.
,
Jackson
,
A. D.
, and
Heimburg
,
T.
,
2018
, “
The Free Energy of Biomembrane and Nerve Excitation and the Role of Anaesthetics
,”
BBA-Biomembr.
,
1860
(
10
), pp.
2145
2153
.10.1016/j.bbamem.2018.04.003
103.
Beshkar
,
M.
,
2018
, “
A Thermodynamic Approach to the Problem of Consciousness
,”
Med. Hypothesis
,
113
, pp.
15
16
.10.1016/j.mehy.2018.02.003
104.
Poznanski
,
R. R.
,
Cacha
,
L. A.
,
Latif
,
A. Z. A.
,
Salleh
,
S. H.
,
Ali
,
J.
,
Yupapin
,
P.
,
Tuszynski
,
J. A.
, and
Tengku
,
M. A.
,
2019
, “
Theorizing How the Brain Encodes Consciousness Based on Negentropic Entanglement
,”
J. Integr. Neurosci.
,
18
(
1
), pp.
1
10
.
105.
Haddad
,
W. M.
,
Hui
,
Q.
, and
Bailey
,
J. M.
,
2014
, “
Human Brain Networks: Spiking Neuron Models, Multistability, Synchronization, Thermodynamics, Maximum Entropy Production, and Anesthetic Cascade Mechanisms
,”
Entropy
,
16
(
7
), pp.
3939
4003
.10.3390/e16073939
106.
Attwell
,
D.
, and
Laughlin
,
S. B.
,
2001
, “
An Energy Budget for Signaling in the Grey Matter of the Brain
,”
J. Cereb. Blood. Flow. Metab.
,
21
(
10
), pp.
1133
1145
.10.1097/00004647-200110000-00001
107.
Sengupta
,
B.
,
Stemmler
,
M. B.
, and
Friston
,
K. J.
,
2013
, “
Information and Efficiency in the Nervous System—A Synthesis
,”
PLoS Comput. Biol.
,
9
(
7
), p.
1003157
.10.1371/journal.pcbi.1003157
108.
Louw
,
R. H.
,
Rubin
,
D. M.
,
Glasser
,
D.
,
Letts
,
R. F. R.
, and
Hildebrandt
,
D.
,
2017
, “
Thermodynamic Considerations in Renalseparation Processes
,”
Theor. Biol. Med. Model.
,
14
(
1
), pp.
2
22
.10.1186/s12976-017-0048-7
109.
Margulis
,
L.
, and
Sagan
,
D.
,
1998
, “
Reproductive Thermodynamics
,”
Nature
,
392
(
6676
), pp.
561
561
.
110.
Sanctorius
,
S.
,
2017
,
Ars de StaticaMedicina
,
Franklin Classic Trade Press
.
111.
Mady
,
C. E. K.
, and
de Oliveira Junior
,
S.
,
2013
, “
Human Body Exergy Metabolism
,”
Int. J. Thermodyn.
,
16
(
2
), pp.
73
80
10.5541/ijot.453.
112.
Batato
,
M.
,
Borel
,
L.
,
Deriaz
,
O.
, and
Jequier
,
E.
,
1990
, “
Analyse Exergétique Théorique Et Expérimentale Du Corps Humain
,”
Entropy
,
26
, pp.
120
130
.https://infoscience.epfl.ch/record/53166?ln=en
113.
Genc
,
S.
,
Sorguven
,
E.
,
Kurnaz
,
I. A.
, and
Ozilgen
,
M.
,
2013
, “
Exergetic Efficiency of ATP Production in Neuronal Glucose Metabolism
,”
Int. J. Exergy
,
13
(
1
), pp.
60
84
.10.1504/IJEX.2013.055778
114.
Borgert
,
J. A.
, and
Moura
,
L. M.
,
2013
, “
Exergetic Analysis of Glucose Metabolism
,”
Int. J. Exergy
,
12
(
1
), pp.
31
53
.10.1504/IJEX.2013.052542
115.
Alberty
,
R. A.
,
2003
,
Thermodynamics of Biochemical Reactions
,
Wiley
, Hoboken, NJ.
116.
Lems
,
S.
,
Kooi
,
H. J. V. D.
, and
Arons
,
J. D. S.
,
2007
, “
Thermodynamic Analysis of the Living Cell: Design of an Exergy-Based Method
,”
Int. J. Exergy
,
4
(
4
), pp.
339
356
.10.1504/IJEX.2007.015077
117.
Ahlborg
,
G.
, and
Jensen-Urstad
,
M.
,
1991
, “
Metabolism in Exercising Arm Vs. leg Muscle
,”
Clin. Physiol.
,
11
(
5
), pp.
459
468
.10.1111/j.1475-097X.1991.tb00818.x
118.
Volianitis
,
S.
, and
Secher
,
N.
,
2002
, “
Arm Blood Flow and Metabolism During Arm and Combined Arm and Leg Exercise in Humans
,”
J. Physiol.
,
544
(
3
), pp.
977
984
.10.1113/jphysiol.2002.023556
119.
Pedersen
,
E.
,
Kozerke
,
S.
,
Ringgaard
,
S.
,
Scheidegger
,
M.
, and
Boesiger
,
P.
,
1999
, “
Quantitative Abdominal Aortic Flow Measurements at Controlled Levels of Ergometer Exercise
,”
Magn. Reson. Imaging
,
17
(
4
), pp.
489
494
.10.1016/S0730-725X(98)00209-4
120.
Strange
,
S.
,
1999
, “
Cardiovascular Control During Concomitant Dynamic Leg Exercise and Static Arm Exercise in Humans
,”
J. Physiol.
,
514
(
1
), pp.
283
291
.10.1111/j.1469-7793.1999.283af.x
121.
Brink-Elfegoun
,
T.
,
Kaijser
,
L.
,
Gustafsson
,
T.
, and
Ekblom
,
B.
,
2007
, “
Maximal Oxygen Uptake is Not Limited by a Central Nervous System Governor
,”
J. App. Physiol.
,
102
(
2
), pp.
781
786
.10.1152/japplphysiol.00566.2006
122.
Catak
,
J.
,
Ozilgen
,
M.
,
Olcay
,
A. B.
, and
Yilmaz
,
B.
,
2018
, “
Assessment of the Work Efficiency With Exergy Method in Ageing Muscles and Enlarged Hearts
,”
Int. J. Exergy
,
25
(
1
), pp.
1
33
.10.1504/IJEX.2018.088885
123.
Catak
,
J.
,
2018c
, “
Thermodynamic Analysis of Work of Breathing of Healthy Individuals and Patients With Chronic Obstructive Pulmonary Disease
,”
Eur. J. Sci. Tech.
,
14
, pp.
145
151
.10.31590/ejosat.472665
124.
Thomas
,
D. M.
,
Scioletti
,
M.
, and
Heymsfield
,
S. B.
,
2019
, “
Predictive Mathematical Models of Weight Loss
,”
Curr. Diabetes Rep.
,
19
, pp.
1
7
.https://link.springer.com/article/10.1007/s11892-019-1207-5
125.
Yildiz
,
C.
,
Semerciöz
,
A. S.
,
Yalçınkaya
,
B. H.
,
Denizİpek
,
T.
,
Ozturk-Isik
,
E.
, and
Özilgen
,
M.
,
2020
, “
Entropy Generation and Accumulation in Biological Systems
,”
Int. J. Exergy
, 33(4), pp.
444
468
.10.1504/IJEX.2020.111691
126.
Strohman
,
R.
,
2003
, “
Thermodynamics—Old Laws in Medicine and Complex Disease
,”
Nat. Biotechnol.
,
21
(
5
), pp.
477
479
.10.1038/nbt0503-477
127.
Bienertová-Vašků
,
J.
,
Zlámal
,
F.
,
Nečesánek
,
I.
,
Konečný
,
D.
, and
Vasku
,
A.
,
2016
, “
Calculating Stress: From Entropy to a Thermodynamic Concept of Health and Disease
,”
PLoS One
,
11
(
1
), p.
e0146667
.10.1371/journal.pone.0146667
128.
Ferrer
,
J.
,
Prats
,
C.
,
López
,
D.
,
Vidal-Mas
,
J.
,
Gargallo-Viola
,
D.
,
Guglietta
,
A.
, and
Giró
,
A.
,
2011
, “
Thermodynamic Concepts in the Study of Microbial Populations: Age Structure in Plasmodium falciparum Infected Red Blood Cells
,”
PLoS One
,
6
(
10
), p.
e26690
.10.1371/journal.pone.0026690
129.
Lucia
,
U.
,
Grisolia
,
G.
,
Ponzetto
,
A.
,
Bergandi
,
L.
, and
Silvagno
,
F.
,
2020
, “
Thermomagnetic Resonance Affects Cancer Growth and Motility
,”
R. Soc. Open Sci.
,
7
(
7
), p.
200299
.10.1098/rsos.200299
130.
Yilmaz
,
B.
,
Ercan
,
S.
,
Akduman
,
S.
, and
Özilgen
,
M.
,
2020
, “
Energetic and Exergetic Costs of COVID-19 Infection on the Body of a Patient
,”
Int. J. Exergy
,
32
(
3
), pp.
314
327
.10.1504/IJEX.2020.108602
131.
Lecarpentier
,
Y.
,
Claes
,
V.
,
Vallée
,
A.
, and
Hébert
,
J. L.
,
2017
, “
Thermodynamics in Cancers: Opposing Interactions Between PPAR Gamma and the Canonical WNT/Beta-Catenin Pathway
,”
Clin. Trans. Med.
,
6
, pp.
1
14
.10.1186/s40169-017-0144-7
132.
Vallée
,
A.
,
Lecarpentier
,
Y.
,
Guillevin
,
R.
, and
Vallée
,
J. N.
,
2018
, “
Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway–PPAR Gamma, Energy Metabolism and Circadian Rhythms
,”
NeuroMolecular Med.
,
20
(
2
), pp.
174
204
.10.1007/s12017-018-8486-x
133.
Vallée
,
A.
,
Lecarpentier
,
Y.
,
Guillevin
,
R.
, and
Vallée
,
J. N.
,
2018
, “
Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches
,”
Int. J. Mol. Sci.
,
19
(
4
), p.
1212
.10.3390/ijms19041212
134.
Vallée
,
A.
,
Lecarpentier
,
Y.
,
Guillevin
,
R.
, and
Vallée
,
J. N.
,
2018
, “
Reprogramming Energetic Metabolism in Alzheimer's Disease
,”
Life Sci.
,
193
, pp.
141
152
.10.1016/j.lfs.2017.10.033
135.
Tosato
,
M.
, and
Marco
,
V. D.
,
2019
, “
Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation Between Relevant Metal Ions and Promising or Established Drugs
,”
Biomolecules
,
9
(
7
), p.
269
.10.3390/biom9070269
136.
Fang
,
X.
, and
Wang
,
J.
,
2020
, “
Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems
,”
Annu. Rev. Biophys.
,
49
(
1
), pp.
227
246
.10.1146/annurev-biophys-121219-081656
137.
Aristov
,
V. V.
,
2019
, “
Biological Systems as Nonequilibrium Structures Described by Kinetic Methods
,”
Results Phys.
,
13
, p.
102232
.10.1016/j.rinp.2019.102232
138.
Zadpoor
,
A. A.
,
2015
, “
Mechanics of Biological Tissues and Biomaterials: Current Trends
,”
Materials (Basel, Switzerland)
,
8
(
7
), pp.
4505
4511
.10.3390/ma8074505
You do not currently have access to this content.