Abstract

Knee finite element (FE) models are used to study tissue deformation in response to complex loads. Typically, ligaments are modeled using transversely isotropic, hyperelastic material models fitted to tension data along the predominant fiber direction (longitudinal) and, less commonly, to tension data orthogonal to the fiber direction (transverse). Currently, the shear and bulk responses of the anterior cruciate ligament (ACL) are not fitted to experimental data. In this study, a newly proposed material model was fitted to longitudinal tension, transverse tension, and shear experimental data. The matrix transverse tensile, shear, and bulk stiffnesses were then varied independently to determine the impact of each property on knee kinematics and tissue deformation in a whole-knee FE model. The range of values for each parameter was chosen based on published FE studies of the knee. For a knee at full extension under 134 N anterior tibial force (ATF), increasing matrix transverse tensile stiffness, shear stiffness, or bulk stiffness decreased anterior tibial translation (ATT), ACL longitudinal strain, and ACL shear strain. For a knee under 134 N ATF and 1600 N compression, changing the ACL matrix mechanical properties caused variations in ATT and thus changed cartilage deformation contours by changing the point of contact between the femoral and the tibial cartilage. These findings indicate that material models for the ACL must describe matrix material properties to best predict the in vivo response to applied loads.

References

1.
Sanders
,
T. L.
,
Maradit Kremers
,
H.
,
Bryan
,
A. J.
,
Larson
,
D. R.
,
Dahm
,
D. L.
,
Levy
,
B. A.
,
Stuart
,
M. J.
, and
Krych
,
A. J.
,
2016
, “
Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study
,”
Am. J. Sports Med.
,
44
(
6
), pp.
1502
1507
.10.1177/0363546516629944
2.
Daniel
,
D.
,
Stone
,
M.
,
Dobson
,
B.
,
Fithian
,
D.
,
Rossman
,
D.
, and
Kaufman
,
K.
,
1994
, “
Fate of the ACL-Injured Patient Prospective Outcome Study
,”
Am. J. Sports. Med.
,
22
(
5
), pp.
632
644
.10.1177/036354659402200511
3.
Andriacchi
,
T.
, and
Mundermann
,
A.
,
2006
, “
The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis
,”
Curr. Opin. Rheumatol.
,
18
(
5
), pp.
514
518
.10.1097/01.bor.0000240365.16842.4e
4.
Ramaniraka
,
N.
,
Saunier
,
P.
,
Siegrist
,
O.
, and
Pioletti
,
D.
,
2007
, “
Biomechanical Evaluation of Intra-Articular and Extra-Articular Procedures in Anterior Cruciate Ligament Reconstruction: A Finite Element Analysis
,”
Clin. Biomech.
,
22
(
3
), pp.
336
343
.10.1016/j.clinbiomech.2006.10.006
5.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
,
2009
, “
Analysis of Partial Meniscectomy and Acl Reconstruction in Knee Joint Biomechanics Under a Combined Loading
,”
Clin. Biomech.
,
24
(
9
), pp.
755
761
.10.1016/j.clinbiomech.2009.07.005
6.
Westermann
,
R.
,
Wolf
,
B.
, and
Elkins
,
J.
,
2013
, “
Effect of Acl Reconstruction Graft Size on Simulated Lachman Testing: A Finite Element Analysis
,”
Iowa Orthop. J.
,
33
, pp.
70
77
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748896/
7.
McLean
,
S.
,
Mallett
,
K.
, and
Arruda
,
E.
,
2015
, “
Deconstructing the Anterior Cruciate Ligament: What we Know and Do Not Know About Function, Material Properties, and Injury Mechanics
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020906
.10.1115/1.4029278
8.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Kaul
,
V.
,
Quatman
,
C.
,
Wordeman
,
S.
,
Hewett
,
T.
,
Demetropoulos
,
C.
, and
Goel
,
V. K.
,
2013
, “
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011002
.10.1115/1.4025692
9.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M.
, and
Doblaré
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
10.
Song
,
Y.
,
Debski
,
R.
,
Musahl
,
V.
,
Maribeth
,
T.
, and
Woo
,
S.
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
(
3
), pp.
383
390
.10.1016/S0021-9290(03)00261-6
11.
Marchi
,
B.
, and
Arruda
,
E.
,
2017
, “
A Study on the Role of Articular Cartilage Soft Tissue Constitutive Form in Models of Whole Knee Biomechanics
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
117
138
.10.1007/s10237-016-0805-2
12.
Park
,
H.
,
Ahn
,
C.
,
Fung
,
D.
,
Ren
,
Y.
, and
Zhang
,
L.
,
2010
, “
A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch
,”
J. Biomech.
,
43
(
10
), pp.
2039
2042
.10.1016/j.jbiomech.2010.03.015
13.
Dhaher
,
Y.
,
Kwon
,
T.
, and
Barry
,
M.
,
2010
, “
The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions
,”
J. Biomech.
,
43
(
16
), pp.
3118
3125
.10.1016/j.jbiomech.2010.08.005
14.
Limbert
,
G.
,
Taylor
,
M.
, and
Middleton
,
J.
,
2004
, “
Three-Dimensional Finite Element Modelling of the Human Acl: Simulation of Passive Knee Flexion With a Stressed and Stress-Free Acl
,”
J. Biomech.
,
37
(
11
), pp.
1723
1731
.10.1016/j.jbiomech.2004.01.030
15.
Xie
,
F.
,
Yang
,
L.
,
Guo
,
L.
,
Wang
,
Z.
, and
Dai
,
G.
,
2009
, “
A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament
,”
ASME J. Biomech. Eng.
,
131
(
2
), p.
121007
.10.1115/1.4000167
16.
Wan
,
C.
,
Hao
,
Z.
, and
Wen
,
S.
,
2013
, “
The Effect of the Variation in Acl Constitutive Model on Joint Kinematics and Biomechanics Under Different Loads: A Finite Element Study
,”
ASME J. Biomech. Eng.
,
135
(
4
), p.
041002
.10.1115/1.4023696
17.
Bae
,
J.
,
Kim
,
G.
,
Seon
,
J.
, and
Jeon
,
I.
,
2016
, “
Finite Element Study on the Anatomic Transtibial Technique for Single-Bundle Anterior Cruciate Ligament Reconstruction
,”
Med. Biol. Eng. Comput.
,
54
(
5
), pp.
811
820
.10.1007/s11517-015-1372-x
18.
Beidokhti
,
H.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.10.1016/j.jbiomech.2017.08.030
19.
Bates
,
N.
,
Myer
,
G.
,
Shearn
,
J.
, and
Hewett
,
T.
,
2015
, “
Anterior Cruciate Ligament Biomechanics During Robotic and Mechanical Simulations of Physiologic and Clinical Motion Tasks: A Systematic Review and Meta-Analysis
,”
Clin. Biomech.
,
30
(
1
), pp.
1
13
.10.1016/j.clinbiomech.2014.12.006
20.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
21.
Marchi
,
B.
,
Arruda
,
E.
, and
Coleman
,
R.
,
2020
, “
The Effect of Articular Cartilage Focal Defect Size and Location in Whole Knee Biomechanics Models
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021002
.10.1115/1.4044032
22.
Deneweth
,
J.
,
McLean
,
S.
, and
Arruda
,
E.
,
2013
, “
Evaluation of Hyperelastic Models for the Non-Linear and Non-Uniform High Strain-Rate Mechanics of Tibial Cartilage
,”
J. Biomech.
,
46
(
10
), pp.
1604
1610
.10.1016/j.jbiomech.2013.04.014
23.
Deneweth
,
J.
,
Arruda
,
E.
, and
McLean
,
S.
,
2015
, “
Hyperelastic Modeling of Location-Dependent Human Distal Femoral Cartilage Mechanics
,”
Int. J. Non. Linear. Mech.
,
68
, pp.
146
156
.10.1016/j.ijnonlinmec.2014.06.013
24.
Oloyede
,
A.
,
Flachsmann
,
R.
, and
Broom
,
N.
,
1992
, “
The Dramatic Influence of Loading Velocity on the Compressive Response of Articular Cartilage
,”
Connect. Tissue Res.
,
27
(
4
), pp.
211
224
.10.3109/03008209209006997
25.
Armstrong
,
C.
,
Lai
,
W.
, and
Mow
,
V.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.10.1115/1.3138475
26.
Skaggs
,
D.
,
Warden
,
W.
, and
Mow
,
V.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
(
2
), pp.
176
186
.10.1002/jor.1100120205
27.
Tissakht
,
M.
, and
Ahmed
,
A.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
28.
Abdel-Rahman
,
E.
, and
Hefzy
,
M.
,
1998
, “
Three-Dimensional Dynamic Behaviour of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
,
20
(
4
), pp.
276
290
.10.1016/S1350-4533(98)00010-1
29.
Atkinson
,
P.
,
Atkinson
,
T.
,
Huang
,
C.
, and
Doane
,
R.
,
2000
, “
A Comparison of the Mechanical and Dimensional Properties of the Human Medial and Lateral Patellofemoral Ligaments
,” 46th Annual Meeting, Orthopaedic Research Society, Orlando, FL, Mar. 12–15, Paper No.
0776
.http://www.ors.org/Transactions/46/0776.pdf
30.
Oh
,
Y.
,
Lipps
,
D.
,
Ashton-Miller
,
J.
, and
Wojtys
,
E.
,
2012
, “
What Strains the Anterior Cruciate Ligament During a Pivot Landing?
,”
Am. J. Sports Med.
,
40
(
3
), pp.
574
583
.10.1177/0363546511432544
31.
Shin
,
C.
,
Chaudhari
,
A.
, and
Andriacchi
,
T.
,
2007
, “
The Influence of Deceleration Forces on Acl Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
32.
Butler
,
D.
,
Sheh
,
M.
,
Stouffer
,
D.
,
Samaranayake
,
V.
, and
Levy
,
M.
,
1990
, “
Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
38
45
.10.1115/1.2891124
33.
Henninger
,
H.
,
Valdez
,
W.
,
Scott
,
S.
, and
Weiss
,
J.
,
2015
, “
Elastin Governs the Mechanical Response of Medial Collateral Ligament Under Shear and Transverse Tensile Loading
,”
Acta Biomater.
,
25
, pp.
304
312
.10.1016/j.actbio.2015.07.011
34.
Quapp
,
K.
, and
Weiss
,
J.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.10.1115/1.2834890
35.
Choi
,
H.
, and
Vito
,
R.
,
1990
, “
Two-Dimensional Stress-Strain Relationship for Canine Pericardium
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
153
159
.10.1115/1.2891166
36.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
37.
Qian
,
S.
,
Ge
,
S.
, and
Wang
,
Q.
,
2006
, “
The Frictional Coefficient of Bovine Knee Articular Cartilage
,”
J. Bionic Eng.
,
3
(
2
), pp.
79
85
.10.1016/S1672-6529(06)60011-5
38.
Unsworth
,
A.
,
Dowson
,
D.
, and
Wright
,
V.
,
1975
, “
The Frictional Behavior of Human Synovial Joints—Part I: Natural Joints
,”
J. Lubric. Technol.
,
97
(
3
), pp.
369
376
.10.1115/1.3452605
39.
Grood
,
E.
, and
Suntay
,
W.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
40.
Orozco
,
G.
,
Tanska
,
P.
,
Mononen
,
M.
,
Halonen
,
K.
, and
Korhonen
,
R.
,
2018
, “
The Effect of Constitutive Representations and Structural Constituents of Ligaments on Knee Joint Mechanics
,”
Sci. Rep.
,
8
(
1
), p.
2323
.10.1038/s41598-018-20739-w
41.
Luetkemeyer
,
C.
,
Cai
,
L.
,
Neu
,
C.
, and
Arruda
,
E.
,
2018
, “
Full-Volume Displacement Mapping of Anterior Cruciate Ligament Bundles With Dualmri
,”
Extrem. Mech. Lett.
,
19
, pp.
7
14
.10.1016/j.eml.2017.12.004
42.
Mallett
,
K.
, and
Arruda
,
E.
,
2017
, “
Digital Image Correlation-Aided Mechanical Characterization of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament
,”
Acta Biomater.
,
56
, pp.
44
57
.10.1016/j.actbio.2017.03.045
43.
Markolf
,
K.
,
Bargar
,
W.
,
Shoemaker
,
S.
, and
Amstutz
,
H.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Jt. Surg.
,
63
(
4
), pp.
570
585
.10.2106/00004623-198163040-00007
44.
Rudy
,
T.
,
Sakane
,
M.
,
Debski
,
R.
, and
Woo
,
S.
,
2000
, “
The Effect of the Point of Application of Anterior Tibial Loads on Human Knee Kinematics
,”
J. Biomech.
,
33
(
9
), pp.
1147
1152
.10.1016/S0021-9290(00)00065-8
45.
Fu
,
F.
,
Bennett
,
C.
,
Lattermann
,
C.
, and
Ma
,
C.
,
1999
, “
Current Trends in Anterior Cruciate Ligament Reconstruction Part 1: Biology and Biomechanics of Reconstruction
,”
Am. J. Sports Med.
,
27
(
6
), pp.
821
830
.10.1177/03635465990270062501
46.
Gabriel
,
M.
,
Wong
,
E.
,
Woo
,
S.
,
Yagi
,
M.
, and
Debski
,
R.
,
2004
, “
Distribution of in Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads
,”
J. Orthop. Res.
,
22
(
1
), pp.
85
89
.10.1016/S0736-0266(03)00133-5
47.
Torzilli
,
P.
,
Deng
,
X.
, and
Warren
,
R.
,
1994
, “
The Effect of Joint-Compressive Load and Quadriceps Muscle Force on Knee Motion in the Intact and Anterior Cruciate Ligament-Sectioned Knee
,”
Am. J. Sports Med.
,
22
(
1
), pp.
105
112
.10.1177/036354659402200117
48.
Yagi
,
M.
,
Wong
,
E.
,
Kanamori
,
A.
,
Debski
,
R.
,
Fu
,
F.
, and
Woo
,
S.
,
2002
, “
Biomechanical Analysis of an Anatomic Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
30
(
5
), pp.
660
666
.10.1177/03635465020300050501
49.
Shelbourne
,
K.
,
Davis
,
T.
, and
Klootwyk
,
T.
,
1998
, “
The Relationship Between Intercondylar Notch Width of the Femur and the Incidence of Anterior Cruciate Ligament Tears
,”
Am. J. Sports Med.
,
26
(
3
), pp.
402
408
.10.1177/03635465980260031001
50.
Arms
,
S.
,
Pope
,
M.
, and
Johnson
,
R.
,
1984
, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
J. Orthop. Res.
,
12
(
1
), pp.
8
18
.https://doi.org/10.1177/036354658401200102
51.
Berns
,
G.
,
Hull
,
M.
, and
Patterson
,
H.
,
1992
, “
Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading
,”
J. Orthop. Res.
,
10
(
2
), pp.
167
176
.10.1002/jor.1100100203
52.
Marchi
,
B.
,
2018
, “
Soft Tissue Constitutive Forms and Their Implications for Whole Knee Computational Models
,”
Ph.D. thesis
,
University of Michigan
, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/144170
You do not currently have access to this content.