Abstract

To simulate the mechanical and fracture behaviors of cancellous bone in three anatomical directions and to develop an equivalent constitutive model. Microscale extended finite element method (XFEM) models of a cancellous specimen were developed with mechanical behaviors in three anatomical directions. An appropriate abaqus macroscale model replicated the behavior observed in the microscale models. The parameters were defined based on the intermediate bone material properties in the anatomical directions and assigned to an equivalent nonporous specimen of the same size. The equivalent model capability was analyzed by comparing the micro- and macromodels. The hysteresis graphs of the microscale model show that the modulus is the same in loading and unloading; similar to the metal plasticity models. The strength and failure strains in each anatomical direction are higher in compression than in tension. The microscale models exhibited an orthotropic behavior. Appropriate parameters of the cast iron plasticity model were chosen to generate macroscale models that are capable of replicating the observed microscale behavior of cancellous bone. Cancellous bone is an orthotropic material that can be simulated using a cast iron plasticity model. This model is capable of replicating the microscale behavior in finite element (FE) analysis simulations without the need for individual trabecula, leading to a reduction in computational resources without sacrificing model accuracy. Also, XFEM of cancellous bone compared to traditional finite element method proves to be a valuable tool to predict and model the fractures in the bone specimen.

References

1.
Feerick
,
E. M.
,
Liu
,
X. C.
, and
McGarry
,
P.
,
2013
, “
Anisotropic Mode-Dependent Damage of Cortical Bone Using the Extended Finite Element Method (XFEM)
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
77
89
.10.1016/j.jmbbm.2012.12.004
2.
Li
,
S.
,
Abdel-Wahab
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Analysis of Fracture Processes in Cortical Bone Tissue
,”
Eng. Fract. Mech.
,
110
, pp.
448
458
.10.1016/j.engfracmech.2012.11.020
3.
Budyn
,
É.
, and
Hoc
,
T.
,
2007
, “
Multiple Scale Modeling for Cortical Bone Fracture in Tension Using X-FEM
,”
Eur. J. Comput. Mech./Rev. Eur. Méc. Numér.
,
16
(
2
), pp.
213
236
.10.3166/remn.16.213-236
4.
Li
,
S.
,
Abdel-Wahab
,
A.
,
Demirci
,
E.
, and
Silberschmidt
,
V. V.
,
2013
, “
Fracture Process in Cortical Bone: X-FEM Analysis of Microstructured Models
,”
Int. J. Fract.
,
184
(
1–2
), pp.
43
55
.10.1007/s10704-013-9814-7
5.
Budyn
,
E.
,
Hoc
,
T.
, and
Jonvaux
,
J.
,
2008
, “
Fracture Strength Assessment and Aging Signs Detection in Human Cortical Bone Using an X-FEM Multiple Scale Approach
,”
Comput. Mech.
,
42
(
4
), pp.
579
591
.10.1007/s00466-008-0283-1
6.
Feerick
,
E. M.
, and
McGarry
,
J. P.
,
2012
, “
Cortical Bone Failure Mechanisms During Screw Pullout
,”
J. Biomech.
,
45
(
9
), pp.
1666
1672
.10.1016/j.jbiomech.2012.03.023
7.
Budyn
,
E.
, and
Hoc
,
T.
,
2006
, “
Multi-Scale Modeling of Human Cortical Bone: Aging and Failure Studies
,”
MRS Online Proceedings Library Archive
, Vol.
975
, Materials Research Society, Pittsburgh, PA.10.1557/PROC-975-0975-DD02-06
8.
Besdo
,
S.
, and
Vashishth
,
D.
,
2012
, “
Extended Finite Element Models of Introcortical Porosity and Heterogeneity in Cortical Bone
,”
Comput. Mater. Sci.
,
64
, pp.
301
305
.10.1016/j.commatsci.2012.04.018
9.
Abdel-Wahab
,
A. A.
, and
Silberschmidt
,
V. V.
,
2011
, “
Numerical Modelling of Impact Fracture of Cortical Bone Tissue Using X-FEM
,”
J. Theor. Appl. Mech.
,
49
, pp.
599
619
.https://research-portal.uws.ac.uk/en/publications/numerical-modelling-of-impact-fracture-of-cortical-bone-tissue-us
10.
Abdel-Wahab
,
A. A.
,
Maligno
,
A.
, and
Silberschmidt
,
V. V.
,
2010
, “
Dynamic Properties of Cortical Bone Tissue: Izod Tests and Numerical Study
,”
Comput. Mater. Continua
,
19
(
3
), p.
217
.https://www.researchgate.net/publication/232167217_Dynamic_Properties_of_Cortical_Bone_Tissue_Izod_Tests_and_Numerical_Study
11.
Ural
,
A.
, and
Mischinski
,
S.
,
2013
, “
Multiscale Modeling of Bone Fracture Using Cohesive Finite Elements
,”
Eng. Fract. Mech.
,
103
, pp.
141
152
.10.1016/j.engfracmech.2012.05.008
12.
Idkaidek
,
A.
,
Koric
,
S.
, and
Jasiuk
,
I.
,
2018
, “
Fracture Analysis of Multi-Osteon Cortical Bone Using XFEM
,”
Comput. Mech.
,
62
(
2
), pp.
171
–1
14
.10.1007/s00466-017-1491-3
13.
Budyn
,
E.
, and
Hoc
,
T.
,
2009
, “
Analysis of Micro Fracture in Human Haversian Cortical Bone Under Transverse Tension Using Extended Physical Imaging
,”
Int. J. Numer. Methods Eng.
,
82
(
8
), pp.
940
965
.10.1002/nme.2791
14.
Jonvaux
,
J.
,
Hoc
,
T.
, and
Budyn
,
E.
,
2012
, “
Analysis of Micro Fracture in Human Haversian Cortical Bone Under Compression
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
9
), pp.
974
998
.10.1002/cnm.2478
15.
Idkaidek
,
A.
, and
Jasiuk
,
I.
,
2017
, “
Cortical Bone Fracture Analysis Using XFEM–Case Study
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
4
), p.
e2809
.10.1002/cnm.2809
16.
Hammond
,
M. A.
,
Wallace
,
J. M.
,
Allen
,
M. R.
, and
Siegmund
,
T.
,
2019
, “
Mechanics of Linear Microcracking in Trabecular Bone
,”
J. Biomech.
,
83
, pp.
34
42
.10.1016/j.jbiomech.2018.11.018
17.
Lee
,
C.-S.
,
Lee
,
J.-M.
,
Youn
,
B.
,
Kim
,
H.-S.
,
Shin
,
J. K.
,
Goh
,
T. S.
, and
Lee
,
J. S.
,
2017
, “
A New Constitutive Model for Simulation of Softening, Plateau, and Densification Phenomena for Trabecular Bone Under Compression
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
213
223
.10.1016/j.jmbbm.2016.08.028
18.
Hosseini
,
H. S.
,
Horák
,
M.
,
Zysset
,
P. K.
, and
Jirásek
,
M.
,
2015
, “
An Over‐Nonlocal Implicit Gradient‐Enhanced Damage‐Plastic Model for Trabecular Bone Under Large Compressive Strains
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
11
).10.1002/cnm.2728
19.
Hosseini
,
H. S.
,
Pahr
,
D. H.
, and
Zysset
,
P. K.
,
2012
, “
Modeling and Experimental Validation of Trabecular Bone Damage, Softening and Densification Under Large Compressive Strains
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
93
102
.10.1016/j.jmbbm.2012.06.005
20.
Pawlikowski
,
M.
,
Jankowski
,
K.
, and
Skalski
,
K.
,
2018
, “
New Microscale Constitutive Model of Human Trabecular Bone Based on Depth Sensing Indentation Technique
,”
J. Mech. Behav. Biomed. Mater.
,
85
, pp.
162
169
.10.1016/j.jmbbm.2018.05.036
21.
Hambli
,
R.
,
2011
, “
Apparent Damage Accumulation in Cancellous Bone Using Neural Networks
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
6
), pp.
868
878
.10.1016/j.jmbbm.2011.03.002
22.
Gupta
,
A.
,
Bayraktar
,
H. H.
,
Fox
,
J. C.
,
Keaveny
,
T. M.
, and
Papadopoulos
,
P.
,
2007
, “
Constitutive Modeling and Algorithmic Implementation of a Plasticity-Like Model for Trabecular Bone Structures
,”
Comput. Mech.
,
40
(
1
), pp.
61
72
.10.1007/s00466-006-0082-5
23.
Schwiedrzik
,
J.
,
Gross
,
T.
,
Bina
,
M.
,
Pretterklieber
,
M.
,
Zysset
,
P.
, and
Pahr
,
D.
,
2016
, “
Experimental Validation of a Nonlinear μFE Model Based on Cohesive‐Frictional Plasticity for Trabecular Bone
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(
4
), p.
e02739
.10.1002/cnm.2739
24.
Harrison
,
N. M.
,
McDonnell
,
P.
,
Mullins
,
L.
,
Wilson
,
N.
,
O'Mahoney
,
D.
, and
McHugh
,
P. E.
,
2013
, “
Failure Modelling of Trabecular Bone Using a Non-Linear Combined Damage and Fracture Voxel Finite Element Approach
,”
Biomech. Model. Mechanobiol.
,
12
(
2
), pp.
225
241
.10.1007/s10237-012-0394-7
25.
Kelly
,
N.
,
Harrison
,
N. M.
,
McDonnell
,
P.
, and
McGarry
,
J. P.
,
2013
, “
An Experimental and Computational Investigation of the Post-Yield Behaviour of Trabecular Bone During Vertebral Device Subsidence
,”
Biomech. Modeling Mechanobiology
,
12
(
4
), pp.
685
703
.10.1007/s10237-012-0434-3
26.
Tomar
,
V.
,
2008
, “
Modeling of Dynamic Fracture and Damage in Two-Dimensional Trabecular Bone Microstructures Using the Cohesive Finite Element Method
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021021
.10.1115/1.2903434
27.
Song
,
J.-H.
,
Wang
,
H.
, and
Belytschko
,
T.
,
2008
, “
A Comparative Study on Finite Element Methods for Dynamic Fracture
,”
Comput. Mech.
,
42
(
2
), pp.
239
250
.10.1007/s00466-007-0210-x
28.
Lee
,
H. C.
, Choi, J. S., Jung, K. H., and Im, Y. T.,
2009
, “
Application of Element Deletion Method for Numerical Analyses of Cracking
,”
J. Achieve. Mater. Manuf. Eng.
,
35
(
2
), pp.
154
161
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.508.1154&rep=rep1&type=pdf
29.
Johnson
,
P. R.
,
Petrinic
,
N.
, and
Süli
,
E.
,
2005
, “
Element-Splitting for Simulation of Fracture in 3D Solid Continua
,”
Computational Plasticity VIII, Fundamentals and Applications
, Vol.
1
,
D. R. J.
Owen
,
E.
Oñate
, and
B.
Suárez
, eds., pp.
507
512
.https://www.researchgate.net/publication/228991113_Element_Splitting_for_Simulation_of_Fracture_in_3D_Solid_Continua
30.
Shim
,
V.
,
Böhme
,
J.
,
Vaitl
,
P.
,
Klima
,
S.
,
Josten
,
C.
, and
Anderson
,
I.
,
2010
, “
Finite Element Analysis of Acetabular Fractures—Development and Validation With a Synthetic Pelvis
,”
J. Biomech.
,
43
(
8
), pp.
1635
1639
.10.1016/j.jbiomech.2010.01.017
31.
Ali
,
A. A.
,
Cristofolini
,
L.
,
Schileo
,
E.
,
Hu
,
H.
,
Taddei
,
F.
,
Kim
,
R. H.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2014
, “
Specimen-Specific Modeling of Hip Fracture Pattern and Repair
,”
J. Biomech.
,
47
(
2
), pp.
536
543
.10.1016/j.jbiomech.2013.10.033
32.
Giambini
,
H.
,
Qin
,
X.
,
Dragomir-Daescu
,
D.
,
An
,
K.-N.
, and
Nassr
,
A.
,
2016
, “
Specimen-Specific Vertebral Fracture Modeling: A Feasibility Study Using the Extended Finite Element Method
,”
Med. Biol. Eng. Comput.
,
54
(
4
), pp.
583
593
.10.1007/s11517-015-1348-x
33.
Mohammed El Sallah
,
Z.
, Ismail, B., Ali, B., Abderahmen, S., Bel Abbes, B. B., and Serier, B.,
2017
, “
Numerical Simulation of the Femur Fracture With and Without Prosthesis Under Static Loading Using Extended Finite Element Method (X-FEM)
,”
J. Mech. Eng.
,
14
(
1
), pp.
97
112
.https://www.semanticscholar.org/paper/Numerical-simulation-of-the-femur-fracture-with-and-Sallah-Ismail/3a90129b6301c54c15d81e01929142db6767d59d
34.
Abaqus
,
2014
, “
Abaqus User Manual (Version 6.14)
,” Dassault Systemes Simulia Corp, Providence, RI.
35.
Salem
,
M.
, Westover, L., Adeeb, S., and Duke, K., “
Prediction of Failure in Cancellous Bone Using XFEM
,”
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine (Epub).
36.
Ridha
,
H.
, and
Thurner
,
P. J.
,
2013
, “
Finite Element Prediction With Experimental Validation of Damage Distribution in Single Trabeculae During Three-Point Bending Tests
,”
J. Mech. Behav. Biomed. Mater.
,
27
, pp.
94
106
.10.1016/j.jmbbm.2013.07.005
37.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.10.1146/annurev.bioeng.3.1.307
38.
Loweletal
,
G.
,
1997
, “
The Quality of Trabecular Bone Evaluated With Micro-Computed Tomography, FEA and Mechanical Testing
,”
Bone Res. Biomech.
,
40
, p.
97
.https://www.ncbi.nlm.nih.gov/pubmed/10168885
39.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
(
11
), pp.
1009
1015
.10.1016/S0021-9290(98)00110-9
40.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
,
Chen
,
T. J.
, and
Keaveny
,
T. M.
,
2000
, “
High-Resolution Finite Element Models With Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone
,”
J. Biomech.
,
33
(
12
), pp.
1575
1583
.10.1016/S0021-9290(00)00149-4
41.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.10.1016/S0021-9290(03)00257-4
42.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Ford
,
C. M.
, and
Hayes
,
W. C.
,
1994
, “
Differences Between the Tensile and Compressive Strengths of Bovine Tibial Trabecular Bone Depend on Modulus
,”
J. Biomech.
,
27
(
9
), pp.
1137
1146
.10.1016/0021-9290(94)90054-X
43.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
,
Yeh
,
O. C.
,
Majumdar
,
S.
,
Burghardt
,
A.
, and
Keaveny
,
T. M.
,
2004
, “
Contribution of Inter-Site Variations in Architecture to Trabecular Bone Apparent Yield Strains
,”
J. Biomech.
,
37
(
9
), pp.
1413
1420
.10.1016/j.jbiomech.2003.12.037
44.
Gong
,
H.
,
Zhang
,
M.
, and
Fan
,
Y.
,
2011
, “
Micro-Finite Element Analysis of Trabecular Bone Yield Behavior—Effects of Tissue Nonlinear Material Properties
,”
J. Mech. Med. Biol.
,
11
(
03
), pp.
563
580
.10.1142/S0219519411004010
45.
Verhulp
,
E.
,
van Rietbergen
,
B.
,
Müller
,
R.
, and
Huiskes
,
R.
,
2008
, “
Indirect Determination of Trabecular Bone Effective Tissue Failure Properties Using Micro-Finite Element Simulations
,”
J. Biomech.
,
41
(
7
), pp.
1479
1485
.10.1016/j.jbiomech.2008.02.032
46.
Gong
,
H.
,
Wang
,
L.
,
Fan
,
Y.
,
Zhang
,
M.
, and
Qin
,
L.
,
2016
, “
Apparent-and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations With Microarchitectures
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1204
1223
.10.1007/s10439-015-1368-6
47.
Charlebois
,
M.
,
Pretterklieber
,
M.
, and
Zysset
,
P. K.
,
2010
, “
The Role of Fabric in the Large Strain Compressive Behavior of Human Trabecular Bone
,”
ASME J. Biomech. Eng.
,
132
(
12
), p.
121006
.10.1115/1.4001361
48.
Ford
,
C. M.
, and
Keaveny
,
T. M.
,
1996
, “
The Dependence of Shear Failure Properties of Trabecular Bone on Apparent Density and Trabecular Orientation
,”
J. Biomech.
,
29
(
10
), pp.
1309
1317
.10.1016/0021-9290(96)00062-0
49.
Wolfram
,
U.
,
Gross
,
T.
,
Pahr
,
D. H.
,
Schwiedrzik
,
J.
,
Wilke
,
H.-J.
, and
Zysset
,
P. K.
,
2012
, “
Fabric-Based Tsai–Wu Yield Criteria for Vertebral Trabecular Bone in Stress and Strain Space
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
218
228
.10.1016/j.jmbbm.2012.07.005
50.
Frost
,
H. M.
,
1994
, “
Wolff's Law and Bone's Structural Adaptations to Mechanical Usage: An Overview for Clinicians
,”
Angle Orthodontist
,
64
(
3
), pp.
175
188
.https://www.ncbi.nlm.nih.gov/pubmed/8060014
51.
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2004
, “
A Computational Investigation of the Nonlinear Behavior of Human Trabecular Bone
,”
Transactions of the 12th Annual Pre-ORS Symposium on Computational Methods in Orthopaedic Biomechanics
, Vol. 2.
52.
Bayraktar
,
H.
,
2004
, “
Nonlinear Micro Finite Element Analysis of Human Trabecular Bone
,”
Circle 141, Abaqus
, pp.
22
25
.
53.
Burr
,
D. B.
, and
Allen
,
M. R.
,
2019
,
Basic and Applied Bone Biology
,
Academic Press
, Cambridge, MA.
54.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus–Density Relationships Depend on Anatomic site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
55.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.10.1016/S0021-9290(01)00011-2
You do not currently have access to this content.