The goal of this work is to develop a framework for manufacturing nonuniform wall thickness replicas of abdominal aortic aneurysms (AAAs). The methodology was based on the use of computed tomography (CT) images for virtual modeling, additive manufacturing for the initial physical replica, and a vacuum casting process and range of polyurethane resins for the final rubberlike phantom. The average wall thickness of the resulting AAA phantom was compared with the average thickness of the corresponding patient-specific virtual model, obtaining an average dimensional mismatch of 180 μm (11.14%). The material characterization of the artery was determined from uniaxial tensile tests as various combinations of polyurethane resins were chosen due to their similarity with ex vivo AAA mechanical behavior in the physiological stress configuration. The proposed methodology yields AAA phantoms with nonuniform wall thickness using a fast and low-cost process. These replicas may be used in benchtop experiments to validate deformations obtained with numerical simulations using finite element analysis, or to validate optical methods developed to image ex vivo arterial deformations during pressure-inflation testing.

References

1.
Upchurch
,
G. R.
, and
Schaub
,
T. A.
,
2006
, “
Abdominal Aortic Aneurysm
,”
Am. Fam. Phys.
,
73
(
7
), pp.
1198
1204
. Available at http://www.aafp.org/afp/2006/0401/p1198.html
2.
The United Kingdom Small Aneurysm Trial Participants
,
2002
, “
Long-Term Outcomes of Immediate Repair Compared With Surveillance of Small Abdominal Aortic Aneurysm
,”
N. Engl. J. Med.
,
346
(
19
), pp.
1445
1452
.10.1056/NEJMoa013527
3.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
, pp.
724
732
.10.1067/mva.2003.213
4.
Doyle
,
B. J.
,
Callahan
,
A.
, and
McGloughlin
,
T. M.
,
2007
, “
A Comparison of Modelling Techniques for Computing Wall Stress in Abdominal Aortic Aneurysm
,”
Biomed. Eng. Online
,
6
, p.
38
.10.1186/1475-925X-6-38
5.
Doyle
,
B. J.
,
Callahan
,
A.
,
Walsh
,
M. T.
,
Grace
,
P. A.
, and
McGloughlin
,
T. M.
,
2009
, “
A Finite Element Analysis Rupture Index (FEARI) as an Additional Tool for Abdominal Aortic Aneurysm Rupture
,”
Vasc. Dis. Prev.
,
6
, p.
114
121
.10.2174/1567270000906010114
6.
Van de Geest
,
J. P.
,
Di Martino
,
E. E.
,
Bohra
,
A.
,
Makaroum
,
M.S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment
,”.
Ann. N.Y. Acad. Sci.
,
1085
,
p. 11
21
.
7.
Doyle
,
B. J.
,
Morris
,
L. G.
,
Callahan
,
A.
,
Kelly
,
P.
,
Vorp
,
D. A.
, and
Mc Gloughli
,
T.M.
,
2008
, “
3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
034501
.10.1115/1.2907765
8.
O'Brien
,
T.
,
Morris
,
L. G.
,
O'Donnell
,
M.
,
Walsh
,
M. T.
, and
Mc Gloughlin
,
T. M.
,
2005
, “
Injection-Moulded Models of Major and Minor Arteries: The Variability of Model Wall Thickness Owing to Casting Technique
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
219
, pp.
381
386
.10.1243/095441105X34347
9.
Raghavan
,
M. L.
,
Kratzberg
,
E. M.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
Da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
10.
Doyle
,
B. J.
,
Corbett
,
T. J.
,
Cloonan
,
A. J.
,
O'Donnell
,
M.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
Mc Gloughli
,
T. M.
,
2009
, “
Experimental Modelling of Aortic Aneurysms: Novel Applications of Silicone Rubbers
,”
Med. Eng. Phys.
,
31
, pp.
1002
1012
.10.1016/j.medengphy.2009.06.002
11.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex Vivo Biomechanical Behaviour of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
(
5
), pp.
573
582
.10.1007/BF02684226
12.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhamme
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.10.1118/1.3284976
13.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061015
.10.1115/1.3127256
14.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
, I
.
, and
Finol
,
E. A.
,
2011
, “
A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models
,”
Ann. Biomech. Eng.
39
(
1
), pp.
249
259
.10.1007/s10439-010-0165-5
15.
Shum
,
J.
,
Martufi
,
G.
,
Di Martino
,
E.
,
Washington
,
C. B.
,
Grisafi
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
277
286
.10.1007/s10439-010-0175-3
16.
Lee
,
K.
,
Zhu
,
J.
,
Shum
,
J.
,
Zhang
,
Y.
,
Muluk
,
S. C.
,
Chandra
,
A.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2013
, “
Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
562
576
.10.1007/s10439-012-0691-4
17.
Raut
,
S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081010
.10.1115/1.4024578
18.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
, pp.
339
362
.10.5254/1.3539210
19.
Lu
,
J.
,
Zhou
,
X.
, and
Raghavan
,
M. L.
,
2007
, “
Inverse Elastostatic Stress Analysis in PreDeformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms
,”
J. Biomech.
,
40
, pp.
693
696
.10.1016/j.jbiomech.2006.01.015
20.
Gee
,
M. W.
,
Reeps
,
C.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2009
, “
Prestressing in Finite Deformation Abdominal Aortic Aneurysm Simulation
,”
J. Biomech.
,
42
, pp.
1732
1739
.10.1016/j.jbiomech.2009.04.016
21.
Speelman
,
L.
,
Bosboom
,
E. M. H.
,
Shurink
,
G. W. H.
,
Buth
,
J.
,
Breeuwer
,
M.
,
Jacobs
,
M. J.
, and
Van de Vosse
,
F. N.
,
2009
, “
Initial Stress and Nonlinear Material Behavior in Patient-Specific AAA Wall Stress Analysis
,”
J. Biomech.
,
42
, pp.
1713
1719
.10.1016/j.jbiomech.2009.04.020
22.
Riveros
,
F.
,
Chandra
,
S. C.
,
Finol
,
E. A.
,
Gasser
,
T. C.
, and
Rodriguez
,
J. F.
,
2013
, “
A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics
,”
Ann. Biomed.Eng.
,
41
, pp.
694
708
.10.1007/s10439-012-0712-3
You do not currently have access to this content.