Activities of daily living (ADLs) generate complex, multidirectional forces in the anterior cruciate ligament (ACL). While calibration problems preclude direct measurement in patients, ACL forces can conceivably be measured in animals after technical challenges are overcome. For example, motion and force sensors can be implanted in the animal but investigators must determine the extent to which these sensors and surgery affect normal gait. Our objectives in this study were to determine (1) if surgically implanting knee motion sensors and an ACL force sensor significantly alter normal ovine gait and (2) how increasing gait speed and grade on a treadmill affect ovine gait before and after surgery. Ten skeletally mature, female sheep were used to test four hypotheses: (1) surgical implantation of sensors would significantly decrease average and peak vertical ground reaction forces (VGRFs) in the operated limb, (2) surgical implantation would significantly decrease single limb stance duration for the operated limb, (3) increasing treadmill speed would increase VGRFs pre- and post operatively, and (4) increasing treadmill grade would increase the hind limb VGRFs pre- and post operatively. An instrumented treadmill with two force plates was used to record fore and hind limb VGRFs during four combinations of two speeds (1.0 m/s and 1.3 m/s) and two grades (0 deg and 6 deg). Sensor implantation decreased average and peak VGRFs less than 10% and 20%, respectively, across all combinations of speed and grade. Sensor implantation significantly decreased the single limb stance duration in the operated hind limb during inclined walking at 1.3 m/s but had no effect on single limb stance duration in the operated limb during other activities. Increasing treadmill speed increased hind limb peak (but not average) VGRFs before surgery and peak VGRF only in the unoperated hind limb during level walking after surgery. Increasing treadmill grade (at 1 m/s) significantly increased hind limb average and peak VGRFs before surgery but increasing treadmill grade post op did not significantly affect any response measure. Since VGRF values exceeded 80% of presurgery levels, we conclude that animal gait post op is near normal. Thus, we can assume normal gait when conducting experiments following sensor implantation. Ultimately, we seek to measure ACL forces for ADLs to provide design criteria and evaluation benchmarks for traditional and tissue engineered ACL repairs and reconstructions.

1.
Giffin
,
J. R.
,
Vogrin
,
T. M.
,
Zantop
,
T.
,
Woo
,
S. L.-Y.
, and
Harner
,
C. D.
, 2004, “
Effects of Increasing Tibial Slope on the Biomechanics of the Knee
,”
Am. J. Sports Med.
0363-5465,
32
(
2
), pp.
376
382
.
2.
Williams
,
R. J.
, 3rd
,
Wickiewicz
,
T. L.
, and
Warren
,
R. F.
, 2000, “
Management of Unicompartmental Arthritis in the Anterior Cruciate Ligament-Deficient Knee
,”
Am. J. Sports Med.
0363-5465,
28
(
5
), pp.
749
760
.
3.
Shelbourne
,
K. D.
, and
Stube
,
K. C.
, 1997, “
Anterior Cruciate Ligament (ACL)-Deficient Knee With Degenerative Arthrosis: Treatment With an Isolated Autogenous Patellar Tendon ACL Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
5
(
3
), pp.
150
156
.
4.
Graf
,
K. W.
, Jr.
,
Sekiya
,
J. K.
, and
Wojtys
,
E. M.
, 2004, “
Long-Term Results After Combined Medial Meniscal Allograft Transplantation and Anterior Cruciate Ligament Reconstruction: Minimum 8.5-Year Follow-Up Study
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
20
(
2
), pp.
129
140
.
5.
Maffulli
,
N.
,
Binfield
,
P. M.
, and
King
,
J. B.
, 2003, “
Articular Cartilage Lesions in the Symptomatic Anterior Cruciate Ligament-Deficient Knee
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
19
(
7
), pp.
685
690
.
6.
Papadonikolakis
,
A.
,
Cooper
,
L.
,
Stergiou
,
N.
,
Georgoulis
,
A. D.
, and
Soucacos
,
P. N.
, 2003, “
Compensatory Mechanisms in Anterior Cruciate Ligament Deficiency
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
11
(
4
), pp.
235
243
.
7.
Setton
,
L. A.
,
Mow
,
V. C.
,
Müller
,
F. J.
,
Pita
,
J. C.
, and
Howeel
,
D. S.
, 1994, “
Mechanical Properties of Canine Articular Cartilage Are Significantly Altered Following Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
12
(
4
), pp.
451
463
.
8.
Georgoulis
,
A. D.
,
Papadonikolakis
,
A.
, and
Papageorgiou
,
C. D.
, 2003, “
Three-Dimensional Tibiofemoral Kinematics of the Anterior Cruciate Ligament-Deficient and Reconstructed Knee During Walking
,”
Am. J. Sports Med.
0363-5465,
31
(
1
), pp.
75
79
.
9.
Noyes
,
F. R.
,
Mooar
,
P. A.
, and
Matthews
,
D. S.
, 1983, “
The Symptomatic Anterior Cruciate-Deficient Knee. Part I: The Long-Term Functional Disability in Athletically Active Individuals
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
65
(
2
), pp.
154
162
.
10.
Noyes
,
F. R.
, and
Barber-Westin
,
S. D.
, 1996, “
Reconstruction of the Anterior Cruciate Ligament With Human Allograft: Comparison of Early and Later Results
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
4
), pp.
524
537
.
11.
Aglietti
,
P.
,
Buzzi
,
R.
, and
D’Andria
,
S.
, 1993, “
Patellofemoral Problems After Intraarticular Anterior Cruciate Ligament Reconstruction
,”
Clin. Orthop. Relat. Res.
0009-921X,
288
, pp.
195
204
.
12.
Almekinders
,
L. C.
,
Moore
,
T.
, and
Freedman
,
D.
, 1995, “
Post-Operative Problems Following Anterior Cruciate Ligament Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
3
(
2
), pp.
78
82
.
13.
Kleipool
,
A. E.
,
van Loon
,
T.
, and
Marti
,
R. K.
, 1994, “
Pain After Use of the Central Third of the Patellar Tendon for Cruciate Ligament Reconstruction: 33 Patients Followed 2–3 Years
,”
Acta Orthop. Scand.
0001-6470,
65
(
1
), pp.
62
66
.
14.
Sachs
,
R. A.
,
Daniel
,
D. M.
, and
Stone
,
M. L.
, 1989, “
Patellofemoral Problems After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
17
(
6
), pp.
760
765
.
15.
Simonian
,
P. T.
,
Mann
,
F. A.
, and
Mandt
,
P. R.
, 1995, “
Indirect Forces and Patella Fracture After Anterior Cruciate Ligament Reconstruction With the Patellar Ligament. Case Report
,”
Am. J. Knee Surg.
0899-7403,
8
(
2
), pp.
60
64
.
16.
Busam
,
M. L.
,
Provencher
,
M. T.
, and
Bach
,
B. R.
, Jr.
, 2008, “
Complications of Anterior Cruciate Ligament Reconstruction With Bone-Patellar Tendon-Bone Constructs: Care and Prevention
,”
Am. J. Sports Med.
0363-5465,
36
(
2
), pp.
379
394
.
17.
Corry
,
I. S.
,
Webb
,
J. M.
, and
Clingeleffer
,
A. J.
, 1999, “
Arthroscopic Reconstruction of the Anterior Cruciate Ligament. A Comparison of Patellar Tendon Autograft and Four-Strand Hamstring Tendon Autograft
,”
Am. J. Sports Med.
0363-5465,
27
(
4
), pp.
444
454
.
18.
Freedman
,
K. B.
,
D’Amato
,
M. J.
, and
Nedeff
,
D. D.
, 2003, “
Arthroscopic Anterior Cruciate Ligament Reconstruction: A Metaanalysis Comparing Patellar Tendon and Hamstring Tendon Autografts
,”
Am. J. Sports Med.
0363-5465,
31
(
1
), pp.
2
11
.
19.
Goldblatt
,
J. P.
,
Fitzsimmons
,
S. E.
, and
Balk
,
E.
, 2005, “
Reconstruction of the Anterior Cruciate Ligament: Meta-Analysis of Patellar Tendon Versus Hamstring Tendon Autograft
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
21
(
7
), pp.
791
803
.
20.
Otto
,
D.
,
Pinczewski
,
L. A.
, and
Clingeleffer
,
A.
, 1998, “
Five-Year Results of Single-Incision Arthroscopic Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft
,”
Am. J. Sports Med.
0363-5465,
26
(
2
), pp.
181
188
.
21.
Gao
,
B.
, and
Zheng
,
N.
, 2010, “
Alterations in Three-Dimensional Joint Kinematics of Anterior Cruciate Ligament-Deficient and -Reconstructed Knees During Walking
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
25
(
3
), pp.
222
229
.
22.
Scanlan
,
S. F.
,
Chaudhari
,
A. M. W.
, and
Dyrby
,
C. O.
, 2010, “
Differences in Tibial Rotation During Walking in ACL Reconstructed and Healthy Contralateral Knees
,”
J. Biomech.
0021-9290,
43
(
9
), pp.
1817
1822
.
23.
von Porat
,
A.
,
Roos
,
E. M.
, and
Roos
,
H.
, 2004, “
High Prevalence of Osteoarthritis 14 Years After an Anterior Cruciate Ligament Tear in Male Soccer Players: A Study of Radiographic and Patient Relevant Outcomes
,”
Ann. Rheum. Dis.
0003-4967,
63
(
3
), pp.
269
273
.
24.
Li
,
G.
,
Zayontz
,
S.
,
Most
,
E.
,
DeFrate
,
L. E.
,
Suggs
,
J. F.
, and
Rubash
,
H. E.
, 2004, “
In Situ Forces of the Anterior and Posterior Cruciate Ligaments in High Knee Flexion: An In Vitro Investigation
,”
J. Orthop. Res.
0736-0266,
22
(
2
), pp.
293
297
.
25.
Bach
,
J. M.
, and
Hull
,
M. L.
, 1998, “
Strain Inhomogeneity in the Anterior Cruciate Ligament Under Application of External and Muscular Loads
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
497
503
.
26.
Markolf
,
K. L.
,
Willems
,
M. J.
,
Jackson
,
S. R.
, and
Finerman
,
G. A. M.
, 1998, “
In Situ Calibration of Miniature Sensors Implanted Into the Anterior Cruciate Ligament. Part I: Strain Measurements
,”
J. Orthop. Res.
0736-0266,
16
(
4
), pp.
455
463
.
27.
Markolf
,
K. L.
,
Gorek
,
J. F.
, and
Kabo
,
J. M.
, 1990, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament. An In Vitro Study Performed With a New Experimental Technique
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
72
(
4
), pp.
557
567
.
28.
Li
,
G.
,
Rudy
,
T. W.
,
Allen
,
C.
,
Sakane
,
M.
, and
Woo
,
S. L.-Y.
, 1998, “
Effect of Combined Axial Compressive and Anterior Tibial Loads on In Situ Forces in the Anterior Cruciate Ligament: A Porcine Study
,”
J. Orthop. Res.
0736-0266,
16
(
1
), pp.
122
127
.
29.
Sakane
,
M.
,
Livesay
,
G. A.
,
Fox
,
R. J.
,
Rudy
,
T. W.
,
Runco
,
T. J.
, and
Woo
,
S. L.-Y.
, 1999, “
Relative Contribution of the ACL, MCL, and Bony Contact to the Anterior Stability of the Knee
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
7
(
2
), pp.
93
97
.
30.
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Woo
,
S. L.-Y.
,
Runco
,
T. J.
,
Sakane
,
M.
,
Li
,
G.
, and
Fu
,
F. H.
, 1997, “
Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
278
284
.
31.
Xerogeanes
,
J. W.
,
Takeda
,
Y.
, and
Livesay
,
G. A.
, 1995, “
Effect of Knee Flexion on the In Situ Force Distribution in the Human Anterior Cruciate Ligament
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
3
(
1
), pp.
9
13
.
32.
Wascher
,
D. C.
,
Markolf
,
K. L.
, and
Shapiro
,
M. S.
, 1993, “
Direct In Vitro Measurement of Forces in the Cruciate Ligaments. Part I: The Effect of Multiplane Loading in the Intact Knee
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
(
3
), pp.
377
386
.
33.
Vahey
,
J. W.
, and
Draganich
,
L. F.
, 1991, “
Tensions in the Anterior and Posterior Cruciate Ligaments of the Knee During Passive Loading: Predicting Ligament Loads From In Situ Measurements
,”
J. Orthop. Res.
0736-0266,
9
(
4
), pp.
529
538
.
34.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
, 1980, “
Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee. A Biomechanical Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
62
(
2
), pp.
259
270
.
35.
Dienst
,
M.
,
Burks
,
R. T.
, and
Greis
,
P. E.
, 2002, “
Anatomy and Biomechanics of the Anterior Cruciate Ligament
,”
Orthop. Clin. North Am.
0030-5898,
33
(
4
), pp.
605
620
.
36.
Markolf
,
K. L.
,
Kochan
,
A.
, and
Amstutz
,
H. C.
, 1984, “
Measurement of Knee Stiffness and Laxity in Patients With Documented Absence of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
66
(
2
), pp.
242
253
.
37.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
, 2005, “
Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
293
298
.
38.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
, and
Sommer
,
H. J.
, III
, 1992, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
0021-9290,
25
(
4
), pp.
347
357
.
39.
Tashman
,
S.
, and
Anderst
,
W.
, 2003, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
238
245
.
40.
Henning
,
C. E.
,
Lynch
,
M. A.
, and
Glick
,
K. R.
, Jr.
, 1985, “
An In Vivo Strain Gage Study of Elongation of the Anterior Cruciate Ligament
,”
Am. J. Sports Med.
0363-5465,
13
(
1
), pp.
22
26
.
41.
Roberts
,
C. S.
,
Cumming
,
J. F.
,
Grood
,
E. S.
, and
Noyes
,
F. R.
, 1994, “
In-Vivo Measurement of Human Anterior Cruciate Ligament Forces During Knee Extension Exercises
,”
Transactions of the 40th Orthopaedic Research Society
, New Orleans, pp.
15
84
.
42.
Allen
,
M. J.
,
Houlton
,
J. E. F.
, and
Adams
,
S. B.
, 1998, “
The Surgical Anatomy of the Stifle Joint in Sheep
,”
Vet. Surg.
0161-3499,
27
(
6
), pp.
596
605
.
43.
Radford
,
W. J. P.
,
Amis
,
A. A.
, and
Stead
,
A. C.
, 1996, “
The Ovine Stifle as a Model for Human Cruciate Ligament Surgery
,”
Veterinary and Comparative Orthopaedics and Traumatology
,
9
(
3
), pp.
134
139
.
44.
Appleyard
,
R. C.
,
Burkhardt
,
D.
, and
Ghosh
,
P.
, 2003, “
Topographical Analysis of the Structural, Biochemical and Dynamic Biomechanical Properties of Cartilage in an Ovine Model of Osteoarthritis
,”
Osteoarthritis Cartilage
1063-4584,
11
(
1
), pp.
65
77
.
45.
Appleyard
,
R. C.
,
Seneviratne
,
A.
, and
Khatib
,
Y.
, 2004, “
Topographical Analysis of the Dynamic Mechanical Properties of Meniscus and Cartilage in an ACL Deficient Ovine Model
,”
Transactions—Seventh World Biomaterials Congress
, Sydney, Australia, p.
700
.
46.
Tapper
,
J. E.
,
Fukushima
,
S.
, and
Azuma
,
H.
, 2006, “
Dynamic In Vivo Kinematics of the Intact Ovine Stifle Joint
,”
J. Orthop. Res.
0736-0266,
24
(
4
), pp.
782
792
.
47.
Howard
,
R. A.
,
Rosvold
,
J. M.
, and
Darcy
,
S. P.
, 2007, “
Reproduction of In Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
743
749
.
48.
Juncosa
,
N.
,
West
,
J. R.
, and
Galloway
,
M. T.
, 2003, “
In Vivo Forces Used to Develop Design Parameters for Tissue Engineered Implants for Rabbit Patellar Tendon Repair
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
483
488
.
49.
Holden
,
J. P.
,
Grood
,
E. S.
, and
Korvick
,
D. L.
, 1994, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
0021-9290,
27
(
5
), pp.
517
526
.
50.
Korvick
,
D. L.
,
Holden
,
J. P.
, and
Grood
,
E. S.
, 1992, “
Relationships Between Patellar Tendon, Anterior Cruciate Ligament and Vertical Ground Reaction Forces During Gait: Preliminary Studies in a Quadruped
,”
ASME Bioengineering Division (BED)
,
22
, pp.
99
102
.
51.
Korvick
,
D. L.
,
Cummings
,
J. F.
, and
Grood
,
E. S.
, 1996, “
The Use of an Implantable Force Transducer to Measure Patellar Tendon Forces in Goats
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
557
561
.
52.
Malaviya
,
P.
,
Butler
,
D. L.
, and
Korvick
,
D. L.
, 1998, “
In Vivo Tendon Forces Correlate With Activity Level and Remain Bounded: Evidence in a Rabbit Flexor Tendon Model
,”
J. Biomech.
0021-9290,
31
(
11
), pp.
1043
1049
.
53.
West
,
J. R.
,
Juncosa
,
N.
, and
Galloway
,
M. T.
, 2004, “
Characterization of In Vivo Achilles Tendon Forces in Rabbits During Treadmill Locomotion at Varying Speeds and Inclinations
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1647
1653
.
54.
Beynnon
,
B. D.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Stankewich
,
C. J.
,
Renström
,
P. A.
, and
Nichols
,
C. E.
, 1997, “
The Strain Behavior of the Anterior Cruciate Ligament During Squatting and Active Flexion-Extension. A Comparison of an Open and a Closed Kinetic Chain Exercise
,”
Am. J. Sports Med.
0363-5465,
25
(
6
), pp.
823
829
.
55.
Beynnon
,
B. D.
, and
Fleming
,
B. C.
, 1998, “
Anterior Cruciate Ligament Strain In-Vivo: A Review of Previous Work
,”
J. Biomech.
0021-9290,
31
(
6
), pp.
519
525
.
56.
Beynnon
,
B. D.
,
Johnson
,
R. J.
, and
Fleming
,
B. C.
, 1994, “
The Measurement of Elongation of Anterior Cruciate-Ligament Grafts In Vivo
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
(
4
), pp.
520
531
.
57.
Beynnon
,
B. D.
,
Johnson
,
R. J.
, and
Fleming
,
B. C.
, 2002, “
Anterior Cruciate Ligament Replacement: Comparison of Bone-Patellar Tendon-Bone Grafts With Two-Strand Hamstring Grafts. A Prospective, Randomized Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84-A
(
9
), pp.
1503
1513
.
58.
Butler
,
D. L.
,
Shearn
,
J. T.
,
Juncosa
,
N.
,
Dressler
,
M. R.
, and
Hunter
,
S. A.
, 2004, “
Functional Tissue Engineering Parameters Toward Designing Repair and Replacement Strategies
,”
Clin. Orthop. Relat. Res.
0009-921X,
427
, pp.
S190
S199
.
59.
Butler
,
D. L.
,
Juncosa
,
N.
, and
Dressler
,
M. R.
, 2004, “
Functional Efficacy of Tendon Repair Processes
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
303
329
.
60.
Taylor
,
W. R.
,
Ehrig
,
R. M.
, and
Heller
,
M. O.
, 2006, “
Tibio-Femoral Joint Contact Forces in Sheep
,”
J. Biomech.
0021-9290,
39
(
5
), pp.
791
798
.
61.
Duda
,
G. N.
,
Eckert-Hübner
,
K.
, and
Sokiranski
,
R.
, 1997, “
Analysis of Inter-Fragmentary Movement as a Function of Musculoskeletal Loading Conditions in Sheep
,”
J. Biomech.
0021-9290,
31
(
3
), pp.
201
210
.
62.
Jordan
,
K.
,
Challis
,
J. H.
, and
Newell
,
K. M.
, 2007, “
Walking Speed Influences on Gait Cycle Variability
,”
Gait and Posture
0966-6362,
26
(
1
), pp.
128
134
.
63.
Nilsson
,
J.
, and
Thorstensson
,
A.
, 1989, “
Ground Reaction Forces at Different Speeds of Human Walking and Running
,”
Acta Physiol. Scand.
0001-6772,
136
(
2
), pp.
217
227
.
64.
Smidt
,
G. L.
, and
Wadsworth
,
J. B.
, 1973, “
Floor Reaction Forces During Gait: Comparison of Patients With Hip Disease and Normal Subjects
,”
Phys. Ther.
0031-9023,
53
(
10
), pp.
1056
1062
.
65.
Stauffer
,
R. N.
,
Chao
,
E. Y. S.
, and
Gyory
,
A. N.
, 1977, “
Biomechanical Gait Analysis of the Diseased Knee Joint
,”
Clin. Orthop. Relat. Res.
0009-921X,
126
, pp.
246
255
.
66.
White
,
S. C.
,
Yack
,
H. J.
, and
Tucker
,
C. A.
, 1998, “
Comparison of Vertical Ground Reaction Forces During Overground and Treadmill Walking
,”
Med. Sci. Sports Exercise
0195-9131,
30
(
10
), pp.
1537
1542
.
67.
Roush
,
J. K.
, and
McLaughlin
,
R. M.
, Jr.
, 1994, “
Effects of Subject Stance Time and Velocity on Ground Reaction Forces in Clinically Normal Greyhounds at the Walk
,”
Am. J. Vet. Res.
0002-9645,
55
(
12
), pp.
1672
1676
.
68.
McIntosh
,
A. S.
,
Beatty
,
K. T.
, and
Dwan
,
L. N.
, 2006, “
Gait Dynamics on an Inclined Walkway
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2491
2502
.
69.
Lay
,
A. N.
,
Hass
,
C. J.
, and
Gregor
,
R. J.
, 2006, “
The Effects of Sloped Surfaces on Locomotion: A Kinematic and Kinetic Analysis
,”
J. Biomech.
0021-9290,
39
(
9
), pp.
1621
1628
.
You do not currently have access to this content.