In vitro studies of abdominal aortic aneurysm (AAA) have been widely reported. Frequently mock artery models with intraluminal thrombus (ILT) analogs are used to mimic the in vivo AAA. While the models used may be physiological, their properties are frequently either not reported or investigated. This study is concerned with the testing and characterization of previously used vessel analog materials and the development of new materials for the manufacture of AAA models. These materials were used in conjunction with a previously validated injection molding technique to manufacture AAA models of ideal geometry. To determine the model properties (stiffness (β) and compliance), the diameter change of each AAA model was investigated under incrementally increasing internal pressures and compared with published in vivo studies to determine if the models behaved physiologically. A FEA study was implemented to determine if the pressure-diameter change behavior of the models could be predicted numerically. ILT analogs were also manufactured and characterized. Ideal models were manufactured with ILT analog internal to the aneurysm region, and the effect of the ILT analog on the model compliance and stiffness was investigated. The wall materials had similar properties (Einit 2.22 MPa and 1.57 MPa) to aortic tissue at physiological pressures (1.8 MPa (from literature)). ILT analogs had a similar Young’s modulus (0.24 MPa and 0.33 MPa) to the medial layer of ILT (0.28 MPa (from literature)). All models had aneurysm sac compliance (2.628.01×104/mmHg) in the physiological range (1.89.4×104/mmHg (from literature)). The necks of the AAA models had similar stiffness (20.44–29.83) to healthy aortas (17.5±5.5 (from literature)). Good agreement was seen between the diameter changes due to pressurization in the experimental and FEA wall models with a maximum difference of 7.3% at 120mmHg. It was also determined that the inclusion of ILT analog in the sac of the models could have an effect on the compliance of the model neck. Ideal AAA models with physiological properties were manufactured. The behavior of these models due to pressurization was predicted using finite element analysis, validating this technique for the future design of realistic physiological AAA models. Addition of ILT analogs in the aneurysm sac was shown to affect neck behavior. This could have implications for endovascular AAA repair due to the importance of the neck for stent-graft fixation.

1.
Sakalihasan
,
N.
,
Limet
,
R.
, and
Defawe
,
O. D.
, 2005, “
Abdominal Aortic Aneurysm
,”
Lancet
0140-6736,
365
(
9470
), pp.
1577
1589
.
2.
Li
,
Z.
, and
Kleinstreur
,
C.
, 2005, “
Fluid-Structure Interaction Effects on Sac-Blood Pressure and Wall Stress in a Stented Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
662
671
.
3.
Office of Population Censuses and Surveys
, 1989,
Mortality Statistics, England and Wales
,
HMSO
,
London
.
4.
Chong
,
C. K.
,
How
,
T. V.
,
Black
,
R. A.
,
Shortland
,
A. P.
, and
Harris
,
P. L.
, 1998, “
Development of a Simulator for Endovascular Repair of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
26
(
5
), pp.
798
802
.
5.
Chong
,
C. K.
,
How
,
T. V.
,
Gilling-Smith
,
G. L.
, and
Harris
,
P. L.
, 2003, “
Modelling Endoleaks and Collateral Reperfusion Following Endovascular AAA Exclusion
,”
J. Endovasc. Ther.
1526-6028,
10
(
3
), pp.
424
432
.
6.
Chong
,
C. K.
, and
How
,
T. V.
, 2004, “
Flow Patterns in an Endovascular Stent Graft for Abdominal Aortic Aneurysm Repair
,”
J. Biomech.
0021-9290,
37
(
1
), pp.
89
97
.
7.
Chong
,
C. K.
,
How
,
T. V.
, and
Harris
,
P. L.
, 2005, “
Flow Visualization in a Model of a Bifurcated Stent-Graft
,”
J. Endovasc. Ther.
1526-6028,
12
(
4
), pp.
435
445
.
8.
Metha
,
M.
,
Veith
,
F. J.
,
Ohki
,
T.
,
Lipsitz
,
E. C.
,
Cayne
,
N. S.
, and
Darling
,
R. C.
, 2003, “
Significance of Endotension, Endoleak, and Aneurysm Pulsatility After Endovascular Repair
,”
J. Vasc. Surg.
0741-5214,
37
(
4
), pp.
842
846
.
9.
Gawenda
,
M.
,
Jaschke
,
G.
,
Winter
,
S.
,
Wassmer
,
G.
, and
Brunkwall
,
J.
, 2003, “
Endotension as a Result of Pressure Transmission Through the Graft Following Endovascular Aneurysm Repair—An In Vitro Study
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
26
(
5
), pp.
501
505
.
10.
Gawenda
,
M.
,
Knez
,
P.
,
Winter
,
S.
,
Jaschke
,
G.
,
Wassmer
,
G.
,
Schmitz-Rixen
,
T.
, and
Brunkwall
,
J.
, 2004, “
Endotension Is Influenced by Wall Compliance in a Latex Aneurysm Model
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
27
(
1
), pp.
45
50
.
11.
Chaudhuri
,
A.
,
Ansdell
,
L. E.
,
Grass
,
A. J.
, and
Adiseshiah
,
M.
, 2004, “
Intrasac Pressure Waveforms After Endovascular Aneurysm Repair (EVAR) Are a Reliable Marker of Type I Endoleaks, but Not Type II or Combined Types: An Experimental Study
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
28
(
4
), pp.
373
378
.
12.
Chaudhuri
,
A.
,
Ansdell
,
L. E.
,
Grass
,
A. J.
, and
Adiseshiah
,
M.
, 2004, “
Aneurysmal Hypertension and Its Relationship to Sac Thrombus: A Semi-Qualitative Analysis by Experimental Fluid Mechanics
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
27
(
3
), pp.
305
310
.
13.
Corbett
,
T. J.
,
Callanan
,
A.
,
Morris
,
L. G.
,
Doyle
,
B. J.
,
Grace
,
P. A.
,
Kavanagh
,
E. G.
, and
McGloughlin
,
T. M.
, 2008, “
A Review of the In Vivo and In Vitro Biomechanical Behaviour and Performance of Postoperative Abdominal Aortic Aneurysms and Implanted Stent-Grafts
,”
J. Endovasc. Ther.
1526-6028,
15
(
4
), pp.
468
484
.
14.
Nichols
,
W. W.
, and
O’ Rourke
,
M. F.
, 1998,
McDonald’s Blood Flow in Arteries
,
Edward Arnold
,
London
, p.
73
.
15.
Williams
,
P. L.
,
Warwick
,
R.
,
Dyson
,
M.
, and
Bannister
,
L. H.
, 1989,
Gray’s Anatomy
,
Churchill Livingstone
,
New York
, pp.
766
767
.
16.
Walker
,
R. D.
,
Smith
,
R. E.
,
Sherriff
,
S. B.
, and
Wood
,
R. F.
, 1999, “
Latex Vessels With Customized Compliance for Use in Arterial Flow Models
,”
Physiol. Meas.
,
20
(
3
), pp.
277
286
. 0967-3334
17.
Chong
,
C. K.
,
Rowe
,
C. S.
,
Sivanesan
,
S.
,
Rattray
,
A.
,
Black
,
R. A.
,
Shortland
,
A. P.
, and
How
,
T. V.
, 1999, “
Computer Aided Design and Fabrication of Models for In Vitro Studies of Vascular Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
213
(
1
), pp.
1
4
.
18.
Friedman
,
M. H.
,
Kuban
,
P.
,
Schmalbrock
,
K.
,
Smith
,
K.
, and
Altan
,
T.
, 1995, “
Fabrication of Vascular Replicas From Magnetic Resonance Images
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
3
), pp.
364
365
.
19.
O’ Brien
,
T.
,
Morris
,
L.
,
O’ Donnell
,
M.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2005, “
Injection-Moulded Models of Major and Minor Arteries: The Variability of Model Wall Thickness Owing to Casting Technique
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
(
5
), pp.
381
386
.
20.
Doyle
,
B. J.
,
Morris
,
L. G.
,
Callanan
,
A.
,
Kelly
,
P.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2008, “
3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
3
), p.
034501
.
21.
Chaudhuri
,
A.
,
Ansdell
,
L. E.
,
Richards
,
R.
,
Adiseshiah
,
M.
, and
Grass
,
A. J.
, 2003, “
Non-Axisymmetrical (Life-Like) Abdominal Aortic Aneurysm Models: A Do It Yourself Approach
,”
J. Endovasc. Ther.
1526-6028,
10
(
6
), pp.
1097
1100
.
22.
Doyle
,
B. J.
,
Corbett
,
T. J.
,
Callanan
,
A.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2009, “
An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm
,”
J. Endovasc. Ther.
1526-6028,
16
(
3
), pp.
322
335
.
23.
Morris
,
L. G.
, 2004, “
Numerical and Experimental Investigation of Mechanical Factors in the Treatment of Abdominal Aortic Aneurysms
,” Ph.D. thesis, University of Limerick, Limerick, Ireland.
24.
Harter
,
L. P.
,
Gross
,
B. H.
,
Callen
,
P. W.
, and
Barth
,
R. A.
, 1982, “
Ultrasonic Evaluation of Abdominal Aortic Thrombus
,”
J. Ultrasound Med.
0278-4297,
1
(
8
), pp.
315
318
.
25.
Timaran
,
C. H.
,
Ohki
,
T.
,
Veith
,
F. J.
,
Lipsitz
,
E. C.
,
Gargiulo
,
N. J.
,
Rhee
,
S. J.
,
Malas
,
M. B.
,
Suggs
,
W. D.
, and
Pacanowski
,
J. P.
, 2005, “
Influence of Type II Endoleak Volume on Aneurysm Wall Pressure and Distribution in an Experimental Model
,”
J. Vasc. Surg.
0741-5214,
41
(
4
), pp.
657
663
.
26.
Mullins
,
L.
, 1969, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
0035-9475,
42
(
1
), pp.
339
362
.
27.
Laheij
,
R.
,
Van Marrewijk
,
C.
, and
Buth
,
J.
, 2001, “
Progress Report Including the Data of the Overall Patient Cohort
,” EUROSTAR Data Registry Centre, January, p. 8.
28.
Morris
,
L.
,
O’Donnell
,
P.
,
Delassus
,
P.
, and
McGloughlin
,
T.
, 2004, “
Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method
,”
Strain
,
40
(
4
), pp.
165
172
. 0039-2103
29.
O’Brien
,
T.
,
Morris
,
L.
, and
McGloughlin
,
T.
, 2007, “
Evidence Suggests Rigid Aortic Grafts Increase Systolic Blood Pressure: Results of a Preliminary Study
,”
Med. Eng. Phys.
1350-4533,
30
(
1
), pp.
109
115
.
30.
O’Brien
,
T. P.
,
Walsh
,
M. T.
,
Morris
,
L. G.
,
Grace
,
P. A.
,
Kavanagh
,
E. G.
, and
McGloughlin
,
T. M.
, 2008, “
Numerical and Experimental Techniques for the Study of Biomechanics in the Arterial System
,”
Biomechanical Systems Technology
,
World Scientific
,
Singapore
, pp.
233
270
.
31.
Chuter
,
T. A. M.
, 2002, “
Stent-Graft Design: The Good, the Bad and the Ugly
,”
Cardiovasc. Surg.
0967-2109,
10
(
1
), pp.
7
13
.
32.
Vorp
,
D. A.
,
Mandarino
,
M.
,
Webster
,
M. W.
, and
Gorcsan
,
J.
, 1996, “
Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Non-Invasive Method
,”
Cardiovasc. Surg.
0967-2109,
4
(
6
), pp.
732
739
.
33.
Sonesson
,
B.
,
Lanne
,
T.
,
Vernersson
,
E.
, and
Hansen
,
F.
, 1994, “
Sex Difference in the Mechanical Properties of the Abdominal Aorta in Human Beings
,”
J. Vasc. Surg.
0741-5214,
20
(
6
), pp.
959
969
.
34.
Doyle
,
B. J.
,
Callanan
,
A.
, and
McGloughlin
,
T. M.
, 2007, “
A Comparison of Modelling Techniques for Computing Wall Stress in Abdominal Aortic Aneurysms
,”
Biomed. Eng. Online
1475-925X,
6
(
38
).
35.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 1996, “
Ex Vivo Biomechanical Behaviour of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
0090-6964,
24
(
5
), pp.
573
582
.
36.
He
,
C. M.
, and
Roach
,
M. R.
, 1994, “
The Composition and Mechanical Properties of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
20
(
1
), pp.
6
13
.
37.
Vallabhaneni
,
S. R.
,
Gilling-Smith
,
G. L.
,
How
,
T. V.
,
Carter
,
S. D.
,
Brennan
,
J. A.
, and
Harris
,
P. L.
, 2004, “
Heterogeneity of Tensile Strength and Matrix Metalloproteinase Activity in the Wall of Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
1526-6028,
11
(
4
), pp.
494
502
.
38.
Wang
,
D. H. J.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2001, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
536
539
.
39.
Fairman
,
R. M.
,
Velazquez
,
O. C.
,
Carpenter
,
J. P.
,
Woo
,
E.
,
Baum
,
R. A.
,
Golden
,
M. A.
,
Kritpracha
,
B.
, and
Criado
,
F.
, 2004, “
Midterm Pivotal Trial Results of the Talent Low Profile System for Repair of Abdominal Aortic Aneurysm: Analysis of Complicated Versus Uncomplicated Aortic Necks
,”
J. Vasc. Surg.
0741-5214,
40
(
6
), pp.
1074
1082
.
40.
Li
,
Z.
, and
Kleinstreuer
,
C.
, 2006, “
Analysis of Biomechanical Factors Affecting Stent-Graft Migration in an Abdominal Aortic Aneurysm Model
,”
J. Biomech.
0021-9290,
39
(
12
), pp.
2264
2273
.
41.
Hinnen
,
J. W.
,
Rixen
,
D. J.
,
Koning
,
O. H.
,
van Bockel
,
J. H.
, and
Hamming
,
J. F.
, 2007, “
Development of Fibrinous Thrombus Analogue for In Vitro Abdominal Aortic Aneurysm Studies
,”
J. Biomech.
0021-9290,
40
(
2
), pp.
289
295
.
42.
Doyle
,
B. J.
,
Corbett
,
T. J.
,
Cloonan
,
A. J.
,
O'Donnell
,
M. R.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2009, “
Experimental Modelling of Aortic Aneurysms: Novel Applications of Silicone Rubbers
,”
Med. Eng. Phys.
1350-4533, to be published.
43.
Finn
,
R.
,
McGloughlin
,
T.
,
Delassus
,
P.
, and
Morris
,
L.
, “
An Experimental Evaluation of the Deformation During and Post Stenting on a Realistic Coronary Artery Phantom
,”
Proceedings of the 15th Annual Conference of the Section of Bioengineering of the Royal Academy of Medicine in Ireland
,
T.
McGloughlin
and
M.
Walsh
, eds., Limerick, Ireland, p.
10
.
You do not currently have access to this content.