Because instrumented spatial linkages (ISLs) have been commonly used in measuring joint rotations and must be calibrated before using the device in confidence, a calibration device design and associated method for quantifying calibration device error would be useful. The objectives of the work reported by this paper were to (1) design an ISL calibration device and demonstrate the design for a specific application, (2) describe a new method for calibrating the device that minimizes measurement error, and (3) quantify measurement error of the device using the new method. Relative translations and orientations of the device were calculated via a series of transformation matrices containing inherent fixed and variable parameters. These translations and orientations were verified with a coordinate measurement machine, which served as a gold standard. Inherent fixed parameters of the device were optimized to minimize measurement error. After parameter optimization, accuracy was determined. The root mean squared error (RMSE) was 0.175 deg for orientation and 0.587 mm for position. All RMSE values were less than 0.8% of their respective full-scale ranges. These errors are comparable to published measurement errors of ISLs for positions and lower by at least a factor of 2 for orientations. These errors are in spite of the many steps taken in design and manufacturing to achieve high accuracy. Because it is challenging to achieve the accuracy required for a custom calibration device to serve as a viable gold standard, it is important to verify that a calibration device provides sufficient precision to calibrate an ISL.

1.
Chao
,
E.
, 1980, “
Justification of Triaxial Goniometer for the Measurement of Joint Rotation
,”
J. Biomech.
0021-9290,
13
, pp.
989
1006
.
2.
Engebretsen
,
L.
,
Lew
,
W. D.
,
Lewis
,
J. L.
, and
Hunter
,
R. E.
, 1989, “
Knee Mechanics After Repair of the Anterior Cruciate Ligament. A Cadaver Study of Ligament Augmentation
,”
Acta Orthop. Scand.
,
60
, pp.
703
709
. 0001-6470
3.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
, pp.
136
144
. 0148-0731
4.
Ishii
,
Y.
,
Terajima
,
K.
,
Koga
,
Y.
,
Takahashi
,
H. E.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
, 1998, “
Gait Analysis After Total Knee Arthroplasty: Comparison of Posterior Cruciate Retention and Substitution
,”
J. Orthop. Sci.
,
3
, pp.
310
317
. 0949-2658
5.
Ishii
,
Y.
,
Terajima
,
K.
,
Terashima
,
S.
, and
Matsueda
,
M.
, 2000, “
Joint Proprioception in the Elderly With and Without Hip Fracture
,”
J. Orthop. Trauma
,
14
, pp.
542
545
. 0890-5339
6.
Kinzel
,
G. L.
,
Hillberry
,
B. M.
,
Hall
,
A. S. J.
,
Van Sickle
,
D. C.
, and
Harvey
,
W. M.
, 1972, “
Measurement of the Total Motion Between Two Body Segments. II. Description of Application
,”
J. Biomech.
0021-9290,
5
, pp.
283
293
.
7.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
, 1992, “
6R Instrumental Spatial Linkages for Anatomical Joint Motion Measurement. I. Design
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
92
100
.
8.
Kovaleski
,
J. E.
,
Gurchiek
,
L. R.
,
Heitman
,
R. J.
,
Hollis
,
J. M.
, and
Pearsall
,
A. W. T.
, 1999, “
Instrumented Measurement of Anteroposterior and Inversion-Eversion Laxity of the Normal Ankle Joint Complex
,”
Foot Ankle Int.
,
20
, pp.
808
814
. 1071-1007
9.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
, 1988, “
Description and Error Evaluation of an In Vitro Knee Joint Testing System
,”
ASME J. Biomech. Eng.
,
110
, pp.
238
248
. 0148-0731
10.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
, 1988, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints--Part I: Kinematics
,”
ASME J. Biomech. Eng.
,
110
, pp.
364
373
. 0148-0731
11.
Siegler
,
S.
,
Lapointe
,
S.
,
Nobilini
,
R.
, and
Berman
,
A. T.
, 1996, “
A Six-Degrees-of-Freedom Instrumented Linkage for Measuring the Flexibility Characteristics of the Ankle Joint Complex
,”
J. Biomech.
0021-9290,
29
, pp.
943
947
.
12.
Sommer
,
H. J. I.
, and
Miller
,
N. R.
, 1980, “
A Technique for Kinematic Modeling of Anatomical Joints
,”
ASME J. Biomech. Eng.
,
102
, pp.
311
317
. 0148-0731
13.
Townsend
,
M. A.
,
Izak
,
M.
, and
Jackson
,
R. W.
, 1977, “
Total Motion Knee Goniometry
,”
J. Biomech.
0021-9290,
10
, pp.
183
193
.
14.
Suntay
,
W. J.
,
Grood
,
E. S.
,
Hefzy
,
M. S.
,
Butler
,
D. L.
, and
Noyes
,
F. R.
, 1983, “
Error Analysis of a System for Measuring Three-Dimensional Joint Motion
,”
ASME J. Biomech. Eng.
,
105
, pp.
127
135
. 0148-0731
15.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
, 1992, “
6R Instrumental Spatial Linkages for Anatomical Joint Motion Measurement. II. Calibration
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
101
110
.
16.
Sholukha
,
V.
,
Salvia
,
P.
,
Hilal
,
I.
,
Feipel
,
V.
,
Rooze
,
M.
, and
Jan
,
S. V.
, 2004, “
Calibration and Validation of 6 DOFs Instrumented Spatial Linkage for Biomechanical Applications: A Practical Approach
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
251
260
.
17.
Sommer
,
H. J. I.
, and
Miller
,
N. R.
, 1981, “
A Technique for the Calibration of Instrumented Spatial Linkages Used for Biomechanical Kinematic Measurements
,”
J. Biomech.
0021-9290,
14
, pp.
91
98
.
18.
Kinzel
,
G. L.
, and
Gutkowski
,
L. J.
, 1983, “
Joint Models, Degrees of Freedom, and Anatomical Motion Measurement
,”
ASME J. Biomech. Eng.
,
105
, pp.
55
62
. 0148-0731
19.
Liu
,
W.
, and
Panjabi
,
M. M.
, 1996, “
On Improving the Accuracy of Instrumented Spatial Linkage System
,”
J. Biomech.
0021-9290,
29
, pp.
1383
1385
.
20.
Nordquist
,
J.
, and
Hull
,
M. L.
, 2007, “
Design and Demonstration of a New Instrumented Spatial Linkage for Use in a Dynamic Environment: Application to Measurement of Ankle Rotations During Snowboarding
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
231
239
.
21.
Chen
,
J.
,
Siegler
,
S.
, and
Schneck
,
C. D.
, 1988, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joint—Part II: Flexibility Characteristics
,”
ASME J. Biomech. Eng.
,
110
, pp.
374
385
. 0148-0731
22.
Uicker
,
J. J.
,
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1964, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
, pp.
309
314
. 0021-8936
23.
Kinzel
,
G. L.
,
Hall
,
A. S. J.
, and
Hillberry
,
B. M.
, 1972, “
Measurement of the Total Motion Between Two Body Segments. I. Analytical Development
,”
J. Biomech.
0021-9290,
5
, pp.
93
105
.
24.
Coleman
,
T. F.
, and
Li
,
Y.
, 1994, “
On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds
,”
Math. Program.
0025-5610,
67
, pp.
189
224
.
25.
Coleman
,
T. F.
, and
Li
,
Y.
, 1996, “
An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
1052-6234,
6
, pp.
418
445
.
You do not currently have access to this content.