While providing nearly trouble-free function for 10–12 years, current bioprosthetic heart valves (BHV) continue to suffer from limited long-term durability. This is usually a result of leaflet calcification and/or structural degeneration, which may be related to regions of stress concentration associated with complex leaflet deformations. In the current work, a dynamic three-dimensional finite element analysis of a pericardial BHV was performed with a recently developed FE implementation of the generalized nonlinear anisotropic Fung-type elastic constitutive model for pericardial BHV tissues (W. Sun and M.S. Sacks, 2005, [Biomech. Model. Mechanobiol., 4(2-3), pp. 190–199]). The pericardial BHV was subjected to time-varying physiological pressure loading to compute the deformation and stress distribution during the opening phase of the valve function. A dynamic sequence of the displacements revealed that the free edge of the leaflet reached the fully open position earlier and the belly region followed. Asymmetry was observed in the resulting displacement and stress distribution due to the fiber direction and the anisotropic characteristics of the Fung-type elastic constitutive material model. The computed stress distribution indicated relatively high magnitudes near the free edge of the leaflet with local bending deformation and subsequently at the leaflet attachment boundary. The maximum computed von Mises stress during the opening phase was 33.8kPa. The dynamic analysis indicated that the free edge regions of the leaflets were subjected to significant flexural deformation that may potentially lead to structural degeneration after millions of cycles of valve function. The regions subjected to time varying flexural deformation and high stresses of the present study also correspond to regions of tissue valve calcification and structural failure reported from explanted valves. In addition, the present simulation also demonstrated the importance of including the bending component together with the in-plane material behavior of the leaflets towards physiologically realistic deformation of the leaflets. Dynamic simulations with experimentally determined leaflet material specification can be potentially used to modify the valve towards an optimal design to minimize regions of stress concentration and structural failure.

1.
Schoen
,
F. J.
, 2001,
Pathology of Heart Valve Substitution with Mechanical and Tissue Prostheses
,
Churchill Livingstone
, New York.
2.
Schoen
,
F. J.
, and
Levy
,
R. J.
, 1994, “
Pathology of Substitute Heart Valves: New Concepts and Developments
,”
J. Card. Surg.
0886-0440,
9
(
2
, Suppl.), pp.
222
227
.
3.
Ferrans
,
V. J.
,
Hilbert
,
S. L.
,
Fujita
,
S.
,
Jones
,
M.
, and
Roberts
,
W. C.
, 1991,
Morphologic Abnormalities in Explanted Bioprosthetic Heart Valves
,
Saunders
, Philadelphia.
4.
Harasaki
,
H.
,
Baker
,
M.
, and
Zona
,
D.
, 1990, “
Cross-Linking Agents, Degree of Crosslinkage and Calcifiability in Bioprosthetic Heart Valves
,” (Abstract)
Trans. Soc. Biomater.
,
13
, p.
25
.
5.
Pereira
,
C. A.
,
Lee
,
J. M.
, and
Haberer
,
S. A.
, 1990, “
Effect of Alternative Crosslinking Methods on the Low Strain Rate Viscoelastic Properties of Bovine Pericardial Bioprosthetic Material
,”
J. Biomed. Mater. Res.
0021-9304,
24
(
3
), pp.
345
361
.
6.
Petite
,
H.
,
Rault
,
I.
,
Huc
,
A.
,
Menasche
,
P.
, and
Herbage
,
D.
, 1990, “
Use of the Acyl Azide Method for Cross-Linking Collagen-Rich Tissues such as Pericardium
,”
J. Biomed. Mater. Res.
0021-9304,
24
(
2
), pp.
179
187
.
7.
Vasudev
,
S. C.
, and
Chandy
,
T.
, 1997, “
Effect of Alternative Crosslinking Techniques on the Enzymatic Degradation of Bovine Pericardia and their Calcification
,”
J. Biomed. Mater. Res.
0021-9304,
35
(
3
), pp.
357
369
.
8.
Bengtsson
,
L. A.
,
Phillips
,
R.
, and
Haegerstrand
,
A. N.
, 1995, “
In vitro Endothelialization of Photooxidatively Stabilized Xenogeneic Pericardium
,”
Ann. Thorac. Surg.
0003-4975,
60
(
2
, Suppl.), pp.
S365
S368
.
9.
Moore
,
M. A.
,
Bohachevsky
,
I. K.
,
Cheung
,
D. T.
,
Boyan
,
B. D.
,
Chen
,
W. M.
,
Bickers
,
R. R.
, and
McIlroy
,
B. K.
, 1994, “
Stabilization of Pericardial Tissue by Dye-Mediated Photooxidation
,”
J. Biomed. Mater. Res.
0021-9304,
28
(
5
), pp.
611
618
.
10.
Moore
,
M. A.
,
Chen
,
W. M.
,
Phillips
,
R. E.
,
Bohachevsky
,
I. K.
, and
McIlroy
,
B. K.
, 1996, “
Shrinkage Temperature Versus Protein Extraction as a Measure of Stabilization of Photooxidized Tissue
,”
J. Biomed. Mater. Res.
0021-9304,
32
(
2
), pp.
209
214
.
11.
Moore
,
M. A.
,
McIlroy
,
B. K.
, and
Phillips
,
R. E.
, Jr.
, 1997, “
Nonaldehyde Sterilization of Biologic Tissue for Use in Implantable Medical Devices
,”
ASAIO J.
1058-2916,
43
(
1
), pp.
23
30
.
12.
Schoen
,
F. J.
, 1998, “
Pathologic Findings in Explanted Clinical Bioprosthetic Valves Fabricated From Photooxidized Bovine Pericardium
,”
J. Heart Valve Dis.
0966-8519,
7
(
2
), pp.
174
179
.
13.
Sacks
,
M. S.
, and
Schoen
,
F. J.
, 2002, “
Collagen Fiber Disruption Occurs Independent of Calcification in Clinically Explanted Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
0021-9304,
62
(
3
), pp.
359
371
.
14.
Cataloglu
,
A.
,
Clark
,
R. E.
, and
Gould
,
P. L.
, 1977, “
Stress Analysis of Aortic Valve Leaflets With Smoothed Geometrical Data
,”
J. Biomech.
0021-9290,
10
(
3
), pp.
153
158
.
15.
Chandran
,
K. B.
,
Kim
,
S. H.
, and
Han
,
G.
, 1991, “
Stress Distribution on the Cusps of a Polyurethane Trileaflet Heart Valve Prosthesis in the Closed Position
,”
J. Biomech.
0021-9290,
24
(
6
), pp.
385
395
.
16.
Ghista
,
D. N.
, and
Reul
,
H.
, 1977, “
Optimal Prosthetic Aortic Leaflet Valve: Design Parametric and Longevity Analyses: Development of the Avcothane-51 Leaflet Valve Based on the Optimum Design Analysis
,”
J. Biomech.
0021-9290,
10
(
5-6
), pp.
313
324
.
17.
Hamid
,
M. S.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
, 1986, “
Influence of Stent Height Upon Stresses on the Cusps of Closed Bioprosthetic Valves
,”
J. Biomech.
0021-9290,
19
(
9
), pp.
759
769
.
18.
Rousseau
,
E. P.
,
van Steenhoven
,
A. A.
, and
Janssen
,
J. D.
, 1988, “
A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis
,”
J. Biomech.
0021-9290,
21
(
7
), pp.
545
562
.
19.
Black
,
M. M.
,
Howard
,
I. C.
,
Huang
,
X.
, and
Patterson
,
E. A.
, 1991, “
A Three-Dimensional Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
0021-9290,
24
(
9
), pp.
793
801
.
20.
Howard
,
I. C.
,
Patterson
,
E. A.
, and
Yoxall
,
A.
, 2003, “
On the Opening Mechanism of the Aortic Valve: Some Observations From Simulations
,”
J. Med. Eng. Technol.
0309-1902,
27
(
6
), pp.
259
266
.
21.
Huang
,
X.
,
Black
,
M. M.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 1990, “
A Two-Dimensional Finite Element Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
0021-9290,
23
(
8
), pp.
753
762
.
22.
Patterson
,
E. A.
,
Howard
,
I. C.
, and
Thornton
,
M. A.
, 1996, “
A Comparative Study of Linear and Nonlinear Simulations of the Leaflets in a Bioprosthetic Heart Valve During the Cardiac Cycle
,”
J. Med. Eng. Technol.
0309-1902,
20
(
3
), pp.
95
108
.
23.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
, 1998, “
Stress Variations in the Human Aortic Root and Valve: the Role of Anatomic Asymmetry
,”
Ann. Biomed. Eng.
0090-6964,
26
(
4
), pp.
534
545
.
24.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
, 1999, “
Mechanisms of Aortic Valve Incompetence in Aging: A Finite Element Model
,”
J. Heart Valve Dis.
0966-8519,
8
(
2
), pp.
149
156
.
25.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
, 2000, “
Mechanisms of Aortic Valve Incompetence: Finite Element Modeling of Aortic Root Dilatation
,”
Ann. Thorac. Surg.
0003-4975,
69
(
6
), pp.
1851
1857
.
26.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
, 2005, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-static Loading
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
905
914
.
27.
Burriesci
,
G.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 1999, “
Influence of Anisotropy on the Mechanical Behaviour of Bioprosthetic Heart Valves
,”
J. Med. Eng. Technol.
0309-1902,
23
(
6
), pp.
203
215
.
28.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model Mechanobiol.
,
4
(
2-3
), pp.
190
199
.
29.
Sacks
,
M. S.
, and
Sun
,
W.
, 2003, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
251
284
.
30.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
, 2003, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-plane Shear
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
372
380
.
31.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
, New York.
32.
Sacks
,
M. S.
, 1999, “
A Method for Planar Biaxial Mechanical Testing That Includes In-plane Shear
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
551
555
.
33.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
0374-3535,
61
(
1-3
), pp.
199
246
.
34.
Hildebrand
,
F.
, 1980,
Advanced Calculus for Applications
,
Prentice Hall
, Englewood Cliffs, NJ.
35.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
, 2005, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
905
914
.
36.
Smith
,
D. B.
,
Sacks
,
M. S.
,
Pattany
,
P. M.
, and
Schroeder
,
R.
, 1999, “
Fatigue-Induced Changes in Bioprosthetic Heart Valve Three-Dimensional Geometry and the Relation to Tissue Damage
,”
J. Heart Valve Dis.
0966-8519,
8
(
1
), pp.
25
33
.
37.
Sacks
,
M. S.
, 2001, “
The Biomechanical Effects of Fatigue on the Porcine Bioprosthetic Heart Valve
,”
J. Long Term Eff. Med. Implants
,
11
(
3-4
), pp.
231
247
.
38.
Naghdi
,
P. M.
, 1972,
The Theory of Plates and Shells
,
Springer-Verlag
, New York.
39.
Simo
,
J. C.
, and
Fox
,
D. D.
, 1989, “
On a Stress Resultant Geometrically Exact Shell-Model. 1. Formulation and Optimal Parametrization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
72
(
3
), pp.
267
304
.
40.
Simo
,
J. C.
,
Fox
,
D. D.
, and
Rifai
,
M. S.
, 1989, “
On a Stress Resultant Geometrically Exact Shell-Model. 2. The Linear-Theory - Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
73
(
1
), pp.
53
92
.
41.
Simo
,
J. C.
,
Fox
,
D. D.
, and
Rifai
,
M. S.
, 1990, “
On a Stress Resultant Geometrically Exact Shell-Model. 3. Computational Aspects of the Nonlinear-Theory
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
79
(
1
), pp.
21
70
.
42.
Brossollet
,
L. J.
, and
Vito
,
R. P.
, 1996, “
A New Approach to Mechanical Testing and Modeling of Biological Tissues, with Application to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
4
), pp.
433
439
.
43.
Rousseeuw
,
P. J.
, and
Leroy
,
A. M.
, 1987,
Robust Regression and Outlier Detection—Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics
,
Wiley
, New York.
44.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
(
1-2
), pp.
107
128
.
45.
Gnyaneshwar
,
R.
,
Kumar
,
R. K.
, and
Balakrishnan
,
K. R.
, 2002, “
Dynamic Analysis of the Aortic Valve Using a Finite Element Model
,”
Ann. Thorac. Surg.
0003-4975,
73
(
4
), pp.
1122
1129
.
46.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
,
Butterworth-Heinemann
, Oxford.
47.
Taylor
,
R. L.
, 2003, FEAP User Manual: v7.5., Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA.
48.
Thubrikar
,
M. J.
, 1990,
The Aortic Valve
,
CRC
, Boca Raton, FL.
49.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Chuong
,
C.
,
Ring
,
W. S.
,
Verrier
,
E. D.
, and
Eberhart
,
R. D.
, 1993, “
Finite Element Analysis of the Mitral Valve
,”
J. Heart Valve Dis.
0966-8519,
2
(
3
), pp.
326
340
.
50.
Sripathi
,
V. C.
,
Kumar
,
R. K.
, and
Balakrishnan
,
K. R.
, 2004, “
Further Insights into Normal Aortic Valve Function: Role of a Compliant Aortic Root on Leaflet Opening and Valve Orifice Area
,”
Ann. Thorac. Surg.
0003-4975,
77
(
3
), pp.
844
851
.
51.
Lim
,
K. H.
,
Yeo
,
J. H.
, and
Duran
,
C. M.
, 2005, “
Three-Dimensional Asymmetrical Modeling of the Mitral Valve: A Finite Element Study with Dynamic Boundaries
,”
J. Heart Valve Dis.
0966-8519,
14
(
3
), pp.
386
392
.
52.
Thubrikar
,
M. J.
,
Deck
,
J. D.
,
Aouad
,
J.
, and
Nolan
,
S. P.
, 1983, “
Role of Mechanical Stress in Calcification of Aortic Bioprosthetic Valves
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
86
(
1
), pp.
115
125
.
53.
Schoen
,
F. J.
,
Levy
,
R. J.
, and
Piehler
,
H. R.
, 1992, “
Pathological Considerations in Replacement Cardiac Valves
,”
Cardiovasc. Pathol.
1054-8807,
1
(
1
), pp.
29
52
.
54.
Deiwick
,
M.
,
Glasmacher
,
B.
,
Baba
,
H. A.
,
Roeder
,
N.
,
Reul
,
H.
,
von Bally
,
G.
, and
Scheld
,
H. H.
, 1998, “
In vitro Testing of Bioprostheses: Influence of Mechanical Stresses and Lipids on Calcification
,”
Ann. Thorac. Surg.
0003-4975,
66
(
6
, Suppl.), pp.
S206
S211
.
55.
Driessen
,
N. J.
,
Boerboom
,
R. A.
,
Huyghe
,
J. M.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2003, “
Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
549
557
.
56.
Kunzelman
,
K. S.
,
Quick
,
D. W.
, and
Cochran
,
R. P.
, 1998, “
Altered Collagen Concentration in Mitral Valve Leaflets: Biochemical and Finite Element Analysis
,”
Ann. Thorac. Surg.
0003-4975,
66
(
6
, Suppl.), pp.
S198
S205
.
57.
Thornton
,
M. A.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 1997, “
Three-Dimensional Stress Analysis of Polypropylene Leaflets for Prosthetic Heart Valves
,”
Med. Eng. Phys.
1350-4533,
19
(
6
), pp.
588
597
.
58.
De Hart
,
J.
,
Baaijens
,
F. P.
,
Peters
,
G. W.
, and
Schreurs
,
P. J.
, 2003, “
A Computational Fluid-Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
699
712
.
59.
De Hart
,
J.
,
Peters
,
G. W.
,
Schreurs
,
P. J.
, and
Baaijens
,
F. P.
, 2003, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
0021-9290,
36
(
1
), pp.
103
112
.
60.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
280
287
.
61.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
(
4
), pp.
678
689
.
62.
Hole
,
J. W.
, 1996,
Hole’s Human Anatomy and Physiology
,
Brown
, Dubuque, IA.
You do not currently have access to this content.