In vivo rodent tail models are becoming more widely used for exploring the role of mechanical loading on the initiation and progression of intervertebral disc degeneration. Historically, finite element models (FEMs) have been useful for predicting disc mechanics in humans. However, differences in geometry and tissue properties may limit the predictive utility of these models for rodent discs. Clearly, models that are specific for rodent tail discs and accurately simulate the disc’s transient mechanical behavior would serve as important tools for clarifying disc mechanics in these animal models. An FEM was developed based on the structure, geometry, and scale of the mouse tail disc. Importantly, two sources of time-dependent mechanical behavior were incorporated: viscoelasticity of the matrix, and fluid permeation. In addition, a novel strain-dependent swelling pressure was implemented through the introduction of a dilatational stress in nuclear elements. The model was then validated against data from quasi-static tension-compression and compressive creep experiments performed previously using mouse tail discs. Finally, sensitivity analyses were performed in which material parameters of each disc subregion were individually varied. During disc compression, matrix consolidation was observed to occur preferentially at the periphery of the nucleus pulposus. Sensitivity analyses revealed that disc mechanics was greatly influenced by changes in nucleus pulposus material properties, but rather insensitive to variations in any of the endplate properties. Moreover, three key features of the model—nuclear swelling pressure, lamellar collagen viscoelasticity, and interstitial fluid permeation—were found to be critical for accurate simulation of disc mechanics. In particular, collagen viscoelasticity dominated the transient behavior of the disc during the initial 2200s of creep loading, while fluid permeation governed disc deformation thereafter. The FEM developed in this study exhibited excellent agreement with transient creep behavior of intact mouse tail motion segments. Notably, the model was able to produce spatial variations in nucleus pulposus matrix consolidation that are consistent with previous observations in nuclear cell morphology made in mouse discs using confocal microscopy. Results of this study emphasize the need for including nucleus swelling pressure, collagen viscoelasticity, and fluid permeation when simulating transient changes in matrix and fluid stress/strain. Sensitivity analyses suggest that further characterization of nucleus pulposus material properties should be pursued, due to its significance in steady-state and transient disc mechanical response.

1.
Hsieh
,
A. H.
, and
Lotz
,
J. C.
, 2003, “
Prolonged Spinal Loading Induces Matrix Metalloproteinase-2 Activation in Intervertebral Discs
,”
Spine
0362-2436,
28
(
16
), pp.
1781
1788
.
2.
Lotz
,
J. C.
,
Colliou
,
O. K.
,
Chin
,
J. R.
,
Duncan
,
N. A.
, and
Liebenberg
,
E.
, 1998, “
Compression-Induced Degeneration of the Intervertebral Disc: An in Vivo Mouse Model and Finite-Element Study
,”
Spine
0362-2436,
23
(
23
), pp.
2493
2506
.
3.
Lotz
,
J. C.
, and
Chin
,
J. R.
, 2000, “
Intervertebral Disc Cell Death is Dependent on the Magnitude and Duration of Spinal Loading
,”
Spine
0362-2436,
25
(
12
), pp.
1477
1483
.
4.
Issever
,
A. S.
,
Walsh
,
A.
,
Lu
,
Y.
,
Burghardt
,
A.
,
Lotz
,
J. C.
, and
Majumdar
,
S.
, 2003, “
Micro-Computed Tomography Evaluation of Trabecular Bone Structure on Loaded Mice Tail Vertebrae
,”
Spine
0362-2436,
28
(
2
), pp.
123
128
.
5.
Hsieh
,
A. H.
,
Edwards
,
W. T.
, and
Lotz
,
J. C.
, 2002, “
Spinal Bending Induces Altered Annular Matrix Stress and Fluid Pressure Distribution
,”
29th Annual Meeting of the International Society for the Study of the Lumbar Spine
, pp.
160
.
6.
Court
,
C.
,
Colliou
,
O. K.
,
Chin
,
J. R.
,
Liebenberg
,
E.
,
Bradford
,
D. S.
, and
Lotz
,
J. C.
, 2001, “
The Effect of Static in Vivo Bending on the Murine Intervertebral Disc
,”
Spine
0362-2436,
1
(
4
), pp.
239
245
.
7.
Walsh
,
A. J.
, and
Lotz
,
J. C.
, 2004, “
Biological Response of the Intervertebral Disc to Dynamic Loading
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
329
337
.
8.
Stokes
,
I. A.
,
Mente
,
P. L.
,
Iatridis
,
J. C.
,
Farnum
,
C. E.
, and
Aronsson
,
D. D.
, 2002, “
Enlargement of Growth Plate Chondrocytes Modulated by Sustained Mechanical Loading
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84-A
(
10
), pp.
1842
1848
.
9.
Stokes
,
I. A.
,
Aronsson
,
D. D.
,
Spence
,
H.
, and
Iatridis
,
J. C.
, 1998, “
Mechanical Modulation of Intervertebral Disc Thickness in Growing Rat Tails
,”
J. Spinal Disord.
0895-0385,
11
(
3
), pp.
261
265
.
10.
Hutton
,
W. C.
,
Yoon
,
S. T.
,
Elmer
,
W. A.
,
Li
,
J.
,
Murakami
,
H.
,
Minamide
,
A.
, and
Akamaru
,
T.
, 2002, “
Effect of Tail Suspension (or Simulated Weightlessness) on the Lumbar Intervertebral Disc: Study of Proteoglycans and Collagen
,”
Spine
0362-2436,
27
(
12
), pp.
1286
1290
.
11.
Iatridis
,
J. C.
,
Mente
,
P. L.
,
Stokes
,
I. A.
,
Aronsson
,
D. D.
, and
Alini
,
M.
, 1999, “
Compression-Induced Changes in Intervertebral Disc Properties in a Rat Tail Model
,”
Spine
0362-2436,
24
(
10
), pp.
996
1002
.
12.
MacLean
,
J. J.
,
Lee
,
C. R.
,
Grad
,
S.
,
Ito
,
K.
,
Alini
,
M.
, and
Iatridis
,
J. C.
, 2003, “
Effects of Immobilization and Dynamic Compression on Intervertebral Disc Cell Gene Expression in Vivo
,”
Spine
0362-2436,
28
(
10
), pp.
973
981
.
13.
Mente
,
P. L.
,
Stokes
,
I. A.
,
Spence
,
H.
, and
Aronsson
,
D. D.
, 1997, “
Progression of Vertebral Wedging in an Asymmetrically Loaded Rat Tail Model
,”
Spine
0362-2436,
22
(
12
), pp.
1292
1296
.
14.
Mente
,
P. L.
,
Aronsson
,
D. D.
,
Stokes
,
I. A.
, and
Iatridis
,
J. C.
, 1999, “
Mechanical Modulation of Growth for the Correction of Vertebral Wedge Deformities
,”
J. Orthop. Res.
0736-0266,
17
(
4
), pp.
518
524
.
15.
Pazzaglia
,
U. E.
,
Andrini
,
L.
, and
Di Nucci
,
A.
, 1997, “
The Effects of Mechanical Forces on Bones and Joints. Experimental Study on the Rat Tail
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
79-B
(
6
), pp.
1024
1030
.
16.
Maclean
,
J. J.
,
Lee
,
C. R.
,
Alini
,
M.
, and
Iatridis
,
J. C.
, 2004, “
Anabolic and Catabolic mRNA Levels of the Intervertebral Disc Vary With the Magnitude and Frequency of in Vivo Dynamic Compression
,”
J. Orthop. Res.
0736-0266,
22
(
6
), pp.
1193
1200
.
17.
Ching
,
C. T.
,
Chow
,
D. H.
,
Yao
,
F. Y.
, and
Holmes
,
A. D.
, 2003, “
The Effect of Cyclic Compression on the Mechanical Properties of the Inter-Vertebral Disc: An in Vivo Study in a Rat Tail Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
3
), pp.
182
189
.
18.
Ching
,
C. T.
,
Chow
,
D. H.
,
Yao
,
F. Y.
, and
Holmes
,
A. D.
, 2004, “
Changes in Nuclear Composition Following Cyclic Compression of the Intervertebral Disc in an in Vivo Rat-Tail Model
,”
Med. Eng. Phys.
1350-4533,
26
(
7
), pp.
587
594
.
19.
Cassidy
,
J. J.
,
Silverstein
,
M. S.
,
Hiltner
,
A.
, and
Baer
,
E.
, 1990, “
A Water Transport Model for the Creep Response of the Intervertebral Disc
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
1
(
2
), pp.
81
89
.
20.
Natarajan
,
R. N.
, and
Andersson
,
G. B.
, 1999, “
The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading
,”
Spine
0362-2436,
24
(
18
), pp.
1873
1881
.
21.
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
, and
Goel
,
V. K.
, 2001, “
Contribution of Disc Degeneration to Osteophyte Formation in the Cervical Spine: A Biomechanical Investigation
,”
J. Orthop. Res.
0736-0266,
19
(
5
), pp.
977
984
.
22.
Spilker
,
R. L.
,
Jakobs
,
D. M.
, and
Schultz
,
A. B.
, 1986, “
Material Constants for a Finite Element Model of the Intervertebral Disk With a Fiber Composite Annulus
,”
J. Biomech. Eng.
0148-0731,
108
(
1
), pp.
1
11
.
23.
Wang
,
J. L.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
, and
Engin
,
A. E.
, 2000, “
Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion. Effect of Loading Rate
,”
Spine
0362-2436,
25
(
3
), pp.
310
318
.
24.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
, 1998, “
The Effect of Fluid Loss on the Viscoelastic Behavior of the Lumbar Intervertebral Disc in Compression
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
1
), pp.
48
54
.
25.
Kasra
,
M.
,
Shirazi-Adl
,
A.
, and
Drouin
,
G.
, 1992, “
Dynamics of Human Lumbar Intervertebral Joints. Experimental and Finite-Element Investigations
,”
Spine
0362-2436,
17
(
1
), pp.
93
102
.
26.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
, 1996, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
0021-9290,
29
(
10
), pp.
1331
1339
.
27.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
, 1986, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
0021-9290,
19
(
4
), pp.
331
350
.
28.
Elliott
,
D. M.
, and
Sarver
,
J. J.
, 2004, “
Young Investigator Award Winner: Validation of the Mouse and Rat Disc as Mechanical Models of the Human Lumbar Disc
,”
Spine
0362-2436,
29
(
7
), pp.
713
722
.
29.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
, 2004, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
213
221
.
30.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
, 2003, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (Peace) Model
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
12
24
.
31.
Cheung
,
J. T.
,
Zhang
,
M.
, and
Chow
,
D. H.
, 2003, “
Biomechanical Responses of the Intervertebral Joints to Static and Vibrational Loading: A Finite Element Study
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
9
), pp.
790
799
.
32.
Laible
,
J. P.
,
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Simon
,
B. R.
, and
Haugh
,
L. D.
, 1993, “
A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc
,”
Spine
0362-2436,
18
(
5
), pp.
659
670
.
33.
Lee
,
C. K.
,
Kim
,
Y. E.
,
Lee
,
C. S.
,
Hong
,
Y. M.
,
Jung
,
J. M.
, and
Goel
,
V. K.
, 2000, “
Impact Response of the Intervertebral Disc in a Finite-Element Model
,”
Spine
0362-2436,
25
(
19
), pp.
2431
2439
.
34.
Lee
,
K. K.
, and
Teo
,
E. C.
, 2004, “
Poroelastic Analysis of Lumbar Spinal Stability in Combined Compression and Anterior Shear
,”
J. Spinal Disord. Tech.
,
17
(
5
), pp.
429
438
.
35.
Martinez
,
J. B.
,
Oloyede
,
V. O.
, and
Broom
,
N. D.
, 1997, “
Biomechanics of Load-Bearing of the Intervertebral Disc: An Experimental and Finite Element Model
,”
Med. Eng. Phys.
1350-4533,
19
(
2
), pp.
145
156
.
36.
Simon
,
B. R.
,
Wu
,
J. S.
,
Carlton
,
M. W.
,
Evans
,
J. H.
, and
Kazarian
,
L. E.
, 1985, “
Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disk
,”
ASME J. Biomech. Eng.
0148-0731,
107
(
4
), pp.
327
335
.
37.
Simon
,
B. R.
,
Wu
,
J. S.
,
Carlton
,
M. W.
,
Kazarian
,
L. E.
,
France
,
E. P.
,
Evans
,
J. H.
, and
Zienkiewicz
,
O. C.
, 1985, “
Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments
,”
Spine
0362-2436,
10
(
6
), pp.
494
507
.
38.
Wu
,
J. S.
, and
Chen
,
J. H.
, 1996, “
Clarification of the Mechanical Behaviour of Spinal Motion Segments Through a Three-Dimensional Poroelastic Mixed Finite Element Model
,”
Med. Eng. Phys.
1350-4533,
18
(
3
), pp.
215
224
.
39.
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1998, “
Experimental Validation of a Porohyperelastic Finite Element Model of the Annulus Fibrosus
,”
Computer Methods in Biomechanics & Biomedical Engineering
,
J.
Middleton
,
M. L.
Jones
, and
G. N.
Pande
, eds.,
Gordon and Breach
, New York.
40.
Colliou
,
O. K.
, 1998, “
Role of Mechanical Loading in Intervertebral Disc Degeneration
,” Ph.D. thesis, University of California—Berkeley, Berkeley, CA.
41.
Sun
,
D. D.
, and
Leong
,
K. W.
, 2004, “
A Nonlinear Hyperelastic Mixture Theory Model for Anisotropy, Transport, and Swelling of Annulus Fibrosus
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
92
102
.
42.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
(
2
), pp.
155
164
.
43.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
44.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2003, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
84
93
.
45.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
6
16
.
46.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
, 1997, “
A Poroelastic Model That Predicts Some Phenomenological Responses of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
4
), pp.
400
405
.
47.
Beek
,
M.
,
Koolstra
,
J. H.
, and
van Eijden
,
T. M.
, 2003, “
Human Temporomandibular Joint Disc Cartilage as a Poroelastic Material
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
1
), pp.
69
76
.
48.
Beilin
,
V.
,
Ito
,
K.
, and
Pande
,
G. N.
, 2003, “
The Effect of Roughness on Biophysical Stimuli at the Bone-Cartilage Interface
,”
J. Biomech.
0021-9290,
36
(
9
), pp.
1381
1385
.
49.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
0021-9290,
36
(
9
), pp.
1373
1379
.
50.
Lacroix
,
D.
, and
Prendergast
,
P. J.
, 2002, “
A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading
,”
J. Biomech.
0021-9290,
35
(
9
), pp.
1163
1171
.
51.
Li
,
L.
,
Shirazi-Adl
,
A.
, and
Buschmann
,
M. D.
, 2003, “
Investigation of Mechanical Behavior of Articular Cartilage by Fibril Reinforced Poroelastic Models
,”
Biorheology
0006-355X,
40
(
1–3
), pp.
227
233
.
52.
Manfredini
,
P.
,
Cocchetti
,
G.
,
Maier
,
G.
,
Redaelli
,
A.
, and
Montevecchi
,
F. M.
, 1999, “
Poroelastic Finite Element Analysis of a Bone Specimen Under Cyclic Loading
,”
J. Biomech.
0021-9290,
32
(
2
), pp.
135
144
.
53.
Morel
,
V.
, and
Quinn
,
T. M.
, 2004, “
Short-Term Changes in Cell and Matrix Damage Following Mechanical Injury of Articular Cartilage Explants and Modelling of Microphysical Mediators
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
509
519
.
54.
Simon
,
B. R.
,
Liable
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M. H.
, 1996, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
1
9
.
55.
Smith
,
C. L.
, and
Mansour
,
J. M.
, 2000, “
Indentation of an Osteochondral Repair: Sensitivity to Experimental Variables and Boundary Conditions
,”
J. Biomech.
0021-9290,
33
(
11
), pp.
1507
1511
.
56.
Steck
,
R.
,
Niederer
,
P.
, and
Knothe Tate
,
M. L.
, 2003, “
A Finite Element Analysis for the Prediction of Load-Induced Fluid Flow and Mechanochemical Transduction in Bone
,”
J. Theor. Biol.
0022-5193,
220
(
2
), pp.
249
259
.
57.
Tanck
,
E.
,
van Driel
,
W. D.
,
Hagen
,
J. W.
,
Burger
,
E. H.
,
Blankevoort
,
L.
, and
Huiskes
,
R.
, 1999, “
Why Does Intermittent Hydrostatic Pressure Enhance the Mineralization Process in Fetal Cartilage?
J. Biomech.
0021-9290,
32
(
2
), pp.
153
161
.
58.
van Driel
,
W. D.
,
van Leeuwen
,
E. J.
,
Von den Hoff
,
J. W.
,
Maltha
,
J. C.
, and
Kuijpers-Jagtman
,
A. M.
, 2000, “
Time-Dependent Mechanical Behaviour of the Periodontal Ligament
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
(
5
), pp.
497
504
.
59.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2003, “
Burst Fracture in the Metastatically Involved Spine: Development, Validation, and Parametric Analysis of a Three-Dimensional Poroelastic Finite-Element Model
,”
Spine
0362-2436,
28
(
7
), pp.
652
660
.
60.
Wren
,
T. A.
,
Beaupré
,
G. S.
, and
Carter
,
D. R.
, 1998, “
A Model for Loading-Dependent Growth, Development, and Adaptation of Tendons and Ligaments
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
107
114
.
61.
Hall
,
B. K.
, 1986, “
The Role of Movement and Tissue Interactions in the Development and Growth of Bone and Secondary Cartilage in the Clavicle of the Embryonic Chick
,”
J. Embryol. Exp. Morphol.
0022-0752,
93
(
2
), pp.
133
152
.
62.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1998, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
0021-9290,
31
(
6
), pp.
535
544
.
63.
Stevens
,
R. L.
,
Ryvar
,
R.
,
Robertson
,
W. R.
,
O’Brien
,
J. P.
, and
Beard
,
H. K.
, 1982, “
Biological Changes in the Annulus Fibrosus in Patients With Low-Back Pain
,”
Spine
0362-2436,
7
(
3
), pp.
223
233
.
64.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1996, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
0362-2436,
21
(
4
), pp.
452
461
.
65.
Skaggs
,
D. L.
,
Warden
,
W. H.
, and
Mow
,
V. C.
, 1994, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
0736-0266,
12
(
2
), pp.
176
185
.
66.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1999, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
17
(
5
), pp.
732
737
.
67.
Setton
,
L. A.
,
Zhu
,
W.
,
Weidenbaum
,
M.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1993, “
Compressive Properties of the Cartilaginous End-Plate of the Baboon Lumbar Spine
,”
J. Orthop. Res.
0736-0266,
11
(
2
), pp.
228
239
.
68.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1997, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
318
322
.
69.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2003, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
0090-6964,
31
(
5
), pp.
599
605
.
70.
Gimbel
,
J. A.
,
Robinson
,
P. S.
,
Abboud
,
J. A.
,
Elliott
,
D. M.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2002, “
Determining the Source of Elasticity and Viscoelasticity in Transgenic Mouse Tendon Fascicles
,”
Trans. of the 48th Annual Meeting of the Orthopaedic Research Society
, p.
603
.
71.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1997, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
0362-2436,
22
(
2
), pp.
140
150
.
72.
Whyne
,
C. M.
,
Hu
,
S. S.
,
Klisch
,
S.
, and
Lotz
,
J. C.
, 1998, “
Effect of the Pedicle and Posterior Arch on Vertebral Body Strength Predictions in Finite Element Modeling
,”
Spine
0362-2436,
23
(
8
), pp.
899
907
.
73.
Johnstone
,
B.
,
Urban
,
J. P.
,
Roberts
,
S.
, and
Menage
,
J.
, 1992, “
The Fluid Content of the Human Intervertebral Disc. Comparison Between Fluid Content and Swelling Pressure Profiles of Discs Removed at Surgery and Those Taken Postmortem
,”
Spine
0362-2436,
17
(
4
), pp.
412
416
.
74.
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Venn
,
M. F.
, 1980, “
Further Studies on the Composition of Human Femoral Head Cartilage
,”
Ann. Rheum. Dis.
0003-4967,
39
(
5
), pp.
514
523
.
75.
Urban
,
J. P.
, and
Maroudas
,
A.
, 1981, “
Swelling of the Intervertebral Disc in Vitro
,”
Connect. Tissue Res.
0300-8207,
9
(
1
), pp.
1
10
.
76.
Fujita
,
Y.
,
Wagner
,
D. R.
,
Biviji
,
A. A.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 2000, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Med. Eng. Phys.
1350-4533,
22
(
5
), pp.
349
357
.
77.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
(
5
), pp.
569
577
.
78.
Grant
,
J. P.
,
Oxland
,
T. R.
, and
Dvorak
,
M. F.
, 2001, “
Mapping the Structural Properties of the Lumbosacral Vertebral Endplates
,”
Spine
0362-2436,
26
(
8
), pp.
889
896
.
79.
Palmer
,
E. I.
, and
Lotz
,
J. C.
, 2004, “
The Compressive Creep Properties of Normal and Degenerated Murine Intervertebral Discs
,”
J. Orthop. Res.
0736-0266,
22
(
1
), pp.
164
169
.
80.
Carter
,
D. R.
,
Beaupre
,
G. S.
,
Giori
,
N. J.
, and
Helms
,
J. A.
, 1998, “
Mechanobiology of Skeletal Regeneration
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
(Suppl), pp.
S41
55
.
81.
Iverson
,
E. P.
, and
Lotz
,
J. C.
, 2003, “
The Effects of Tissue Level Forces on the Cells of the Intervertebral Disc
,” 30th Annual Meeting of the International Society for the Study of the Lumbar Spine, pp.
264
.
82.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 1999, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
1
), pp.
41
53
.
83.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
, 1997, “
Finite Element Model of the Human Lower Cervical Spine: Parametric Analysis of the C4-C6 Unit
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
1
), pp.
87
92
.
84.
Rao
,
A. A.
, and
Dumas
,
G. A.
, 1991, “
Influence of Material Properties on the Mechanical Behaviour of the L5-S1 Intervertebral Disc in Compression: A Nonlinear Finite Element Study
,”
J. Biomed. Eng.
0141-5425,
13
(
2
), pp.
139
151
.
85.
Ohshima
,
H.
,
Tsuji
,
H.
,
Hirano
,
N.
,
Ishihara
,
H.
,
Katoh
,
Y.
, and
Yamada
,
H.
, 1989, “
Water Diffusion Pathway, Swelling Pressure, and Biomechanical Properties of the Intervertebral Disc During Compression Load
,”
Spine
0362-2436,
14
(
11
), pp.
1234
1244
.
86.
Ogata
,
Y.
,
Itoh
,
Y.
, and
Nagase
,
H.
, 1995, “
Steps Involved in Activation of the Pro-Matrix Metalloproteinase 9 (Progelatinase B)-Tissue Inhibitor of Metalloproteinases-1 Complex by 4-Aminophenylmercuric Acetate and Proteinases
,”
J. Biol. Chem.
0021-9258,
270
(
31
), pp.
18506
18511
.
87.
Ayotte
,
D. C.
,
Ito
,
K.
,
Perren
,
S. M.
, and
Tepic
,
S.
, 2000, “
Direction-Dependent Constriction Flow in a Poroelastic Solid: The Intervertebral Disc Valve
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
587
593
.
88.
Roberts
,
S.
,
Urban
,
J. P.
,
Evans
,
H.
, and
Eisenstein
,
S. M.
, 1996, “
Transport Properties of the Human Cartilage Endplate in Relation to its Composition and Calcification
,”
Spine
0362-2436,
21
(
4
), pp.
415
420
.
89.
Gruber
,
H. E.
, and
Hanley
,
E. N.
, Jr.
, 2002, “
Ultrastructure of the Human Intervertebral Disc During Aging and Degeneration: Comparison of Surgical and Control Specimens
,”
Spine
0362-2436,
27
(
8
), pp.
798
805
.
90.
Berlemann
,
U.
,
Gries
,
N. C.
, and
Moore
,
R. J.
, 1998, “
The Relationship Between Height, Shape and Histological Changes in Early Degeneration of the Lower Lumbar Discs
,”
Eur. Spine J.
0940-6719,
7
(
3
), pp.
212
217
.
91.
Boos
,
N.
,
Nerlich
,
A. G.
,
Wiest
,
I.
,
von der Mark
,
K.
, and
Aebi
,
M.
, 1997, “
Immunolocalization of Type X Collagen in Human Lumbar Intervertebral Discs During Aging and Degeneration
,”
Histochem. Cell Biol.
0948-6143,
108
(
6
), pp.
471
480
.
92.
Boos
,
N.
,
Weissbach
,
S.
,
Rohrbach
,
H.
,
Weiler
,
C.
,
Spratt
,
K. F.
, and
Nerlich
,
A. G.
, 2002, “
Classification of Age-Related Changes in Lumbar Intervertebral Discs: 2002 Volvo Award in Basic Science
,”
Spine
0362-2436,
27
(
23
), pp.
2631
2644
.
93.
Bishop
,
P. B.
, and
Pearce
,
R. H.
, 1993, “
The Proteoglycans of the Cartilaginous End-Plate of the Human Intervertebral Disc Change After Maturity
,”
J. Orthop. Res.
0736-0266,
11
(
3
), pp.
324
331
.
94.
Simon
,
B. R.
, and
Gaballa
,
M. A.
, 1988, “
Poroelastic Finite Element Models for the Spinal Motion Segment Including Ionic Swelling
,”
Computational Methods in Bioengineering
,
R. L.
Spilker
, and
B. R.
Simon
, eds.,
American Society of Mechanical Engineers
, New York, pp.
93
99
.
95.
Urban
,
J. P.
, and
McMullin
,
J. F.
, 1988, “
Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration
,”
Spine
0362-2436,
13
(
2
), pp.
179
187
.
96.
Roughley
,
P. J.
,
Alini
,
M.
, and
Antoniou
,
J.
, 2002, “
The Role of Proteoglycans in Aging, Degeneration and Repair of the Intervertebral Disc
,”
Biochem. Soc. Trans.
0300-5127,
30
(
6
), pp.
869
874
.
97.
Cs-Szabo
,
G.
,
Ragasa-San Juan
,
D.
,
Turumella
,
V.
,
Masuda
,
K.
,
Thonar
,
E. J.
, and
An
,
H. S.
, 2002, “
Changes in Mrna and Protein Levels of Proteoglycans of the Anulus Fibrosus and Nucleus Pulposus During Intervertebral Disc Degeneration
,”
Spine
0362-2436,
27
(
20
), pp.
2212
2219
.
98.
Broberg
,
K. B.
, 1993, “
Slow Deformation of Intervertebral Discs
,”
J. Biomech.
0021-9290,
26
(
4–5
), pp.
501
512
.
You do not currently have access to this content.