This study investigated the numerical convergence characteristics of specimen-specific “voxel-based” finite element models of 14 excised human cadaveric lumbar vertebral bodies (age: 37–87; M=6, F=8) that were generated automatically from clinical-type CT scans. With eventual clinical applications in mind, the ability of the model stiffness to predict the experimentally measured compressive fracture strength of the vertebral bodies was also assessed. The stiffness of “low”-resolution models (3×3×3 mm element size) was on average only 4% greater p=0.03 than for “high”-resolution models (1×1×1.5 mm) despite interspecimen variations that varied over four-fold. Damage predictions using low- vs high-resolution models were significantly different p=0.01 at loads corresponding to an overall strain of 0.5%. Both the high r2=0.94 and low r2=0.92 resolution model stiffness values were highly correlated with the experimentally measured ultimate strength values. Because vertebral stiffness variations in the population are much greater than those that arise from differences in voxel size, these results indicate that imaging resolution is not critical in cross-sectional studies of this parameter. However, longitudinal studies that seek to track more subtle changes in stiffness over time should account for the small but highly significant effects of voxel size. These results also demonstrate that an automated voxel-based finite element modeling technique may provide an excellent noninvasive assessment of vertebral strength.

1.
Genant
,
H. K.
,
Engelke
,
K.
,
Fuerst
,
T.
,
Glu¨er
,
C. C.
,
Grampp
,
S.
,
Harris
,
S. T.
,
Jergas
,
M.
,
Lang
,
T.
,
Lu
,
Y.
,
Majumdar
,
S.
,
Mathur
,
A.
, and
Takada
,
M.
,
1996
, “
Noninvasive Assessment of Bone Mineral and Structure: State of the Art
,”
J. Bone Miner. Res.
,
11
, pp.
707
730
.
2.
Faulkner
,
K. G.
,
Cann
,
C. E.
, and
Hasegawa
,
B. H.
,
1991
, “
Effect of Bone Distribution on Vertebral Strength: Assessment With a Patient-Specific Nonlinear Finite Element Analysis
,”
Radiology
,
179
, pp.
669
674
.
3.
Martin
,
H.
,
Werner
,
J.
,
Andresen
,
R.
,
Schober
,
H. C.
, and
Schmitz
,
K. P.
,
1998
, “
Noninvasive Assessment of Stiffness and Failure Load of Human Vertebrae From CT-Data
,”
Biomed. Tech.
,
43
, pp.
82
88
.
4.
Homminga
,
J.
,
Weinans
,
H.
,
Gowin
,
W.
,
Felsenberg
,
D.
, and
Huiskes
,
R.
,
2001
, “
Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but Not the Vertebral Load Distribution
,”
Spine
,
26
, pp.
1555
1561
.
5.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1998
, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
,
16
, pp.
300
308
.
6.
Keyak
,
J. H.
,
Meagher
,
J. M.
,
Skinner
,
H. B.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Automated Three-Dimensional Finite Element Modelling of Bone: A New Method
,”
J. Biomed. Eng.
,
12
, pp.
389
397
.
7.
Keyak
,
J. H.
, and
Skinner
,
H. B.
,
1992
, “
Three-Dimensional Finite Element Modelling of Bone—Effects of Element Size
,”
J. Biomed. Eng.
,
14
, pp.
483
489
.
8.
Marks
,
L. W.
, and
Gardner
,
T. N.
,
1993
, “
The Use of Strain Energy as a Convergence Criterion in the Finite Element Modelling of Bone and the Effect of Model Geometry on Stress Convergence
,”
J. Biomed. Eng.
,
15
, pp.
474
476
.
9.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
,
1998
, “
The Accuracy of Digital Image-Based Finite Element Models.
,”
ASME J. Biomech. Eng.
,
120
, pp.
289
295
.
10.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
,
1999
, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
121
, pp.
629
635
.
11.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1994
, “
Direct and Computed Tomography Thickness Measurements of the Human Lumbar Vertebral Shell and Endplate.
,”
Bone
,
15
, pp.
409
414
.
12.
Vesterby
,
A.
,
Mosekilde
,
L.
,
Gundersen
,
H. J. G.
,
Melsen
,
F.
,
Mosekilde
,
L.
,
Holem
,
K.
, and
Sorensen
,
S.
,
1991
, “
Biologically Meaningful Determinants of the In Vitro Strength of Lumbar Vertebrae
,”
Bone
,
12
, pp.
219
224
.
13.
Kopperdahl
,
D. L.
,
Pearlman
,
J. L.
, and
Keaveny
,
T. M.
,
2000
, “
Biomechanical Consequences of an Isolated Overload on the Human Vertebral Body
,”
J. Orthop. Res.
,
18
, pp.
685
690
.
14.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
,
59-A, pp.
954
962
.
15.
Lewis
,
G.
,
1997
, “
Properties of Acrylic Bone Cement: State of the Art Review
,”
J. Biomed. Mater. Res.
,
38
, pp.
155
182
.
16.
Kopperdahl
,
D. L.
,
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2002
, “
Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
20
, pp.
801
805
.
17.
Ulrich
,
D.
,
Van Rietbergen
,
B.
,
Laib
,
A.
, and
Rueegsegger
,
P.
,
1999
, “
The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,”
Bone
,
25
, pp.
55
60
.
18.
Mosekilde
,
L.
,
Mosekilde
,
L.
, and
Danielsen
,
C. C.
,
1987
, “
Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Density and Age in Normal Individuals
,”
Bone
,
8
, pp.
79
85
.
19.
Fyhrie
,
D. P.
, and
Vashishth
,
D.
,
2000
, “
Bone Stiffness Predicts Strength Similarly for Human Vertebral Cancellous Bone in Compression and for Cortical Bone in Tension
,”
Bone
,
26
, pp.
169
173
.
20.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
, pp.
569
577
.
21.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
, pp.
1009
1015
.
22.
Yeni
,
Y. N.
, and
Fyhrie
,
D. P.
,
2001
, “
Finite Element Calculated Uniaxial Apparent Stiffness is a Consistent Predictor of Uniaxial Apparent Strength in Human Vertebral Cancellous Bone Tested With Different Boundary Conditions
,”
J. Biomech.
,
34
, pp.
1649
1654
.
23.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
, pp.
601
608
.
24.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
, and
Kopperdahl
,
D. L.
,
1999
, “
Mechanical Behavior of Human Trabecular Bone After Overloading
,”
J. Orthop. Res.
,
17
, pp.
346
353
.
25.
Cann
,
C. E.
,
Genant
,
H. K.
,
Kolb
,
F. O.
, and
Ettinger
,
B.
,
1985
, “
Quantitative Computed Tomography for Prediction of Vertebral Fracture Risk
,”
Bone
,
6
, pp.
1
7
.
26.
Melton
,
L. J.
, III
,
Khosla
,
S.
,
Atkinson
,
E. J.
,
Oconnor
,
M. K.
,
Ofallon
,
W. M.
, and
Riggs
,
B. L.
,
2000
, “
Cross-Sectional Versus Longitudinal Evaluation of Bone Loss in Men and Women
,”
Osteoporosis Int.
,
11
, pp.
592
599
.
27.
Keaveny
,
T. M.
,
Pinilla
,
T. P.
,
Crawford
,
R. P.
,
Kopperdahl
,
D. L.
, and
Lou
,
A.
,
1997
, “
Systematic and Random Errors in Compression Testing of Trabecular Bone
,”
J. Orthop. Res.
,
15
, pp.
101
110
.
28.
Cody
,
D. D.
,
Hou
,
F. J.
,
Divine
,
G. W.
, and
Fyhrie
,
D. P.
,
2000
, “
Short Term in Vivo Precision of Proximal Femoral Finite Element Modeling
,”
Ann. Biomed. Eng.
,
28
, pp.
408
414
.
29.
Ebbesen
,
E. N.
,
Thomsen
,
J. S.
,
Beck-Nielsen
,
H.
,
Nepper-Rasmussen
,
H. J.
, and
Mosekilde
,
L.
,
1998
, “
Vertebral Bone Density Evaluated by Dual-Energy X-Ray Absorptiometry and Quantitative Computed Tomography in Vitro
,”
Bone
,
23
, pp.
283
290
.
30.
Cody
,
D. D.
,
Gross
,
G. J.
,
Hou
,
F. J.
,
Spencer
,
H. J.
,
Goldstein
,
S. A.
, and
Fyhrie
,
D. P.
,
1999
, “
Femoral Strength is Better Predicted by Finite Element Models Than QCT and DXA
,”
J. Biomech.
,
32
, pp.
1013
1020
.
31.
Keyak
,
J. H.
,
Rossi
,
S. A.
,
Jones
,
K. A.
, and
Skinner
,
H. B.
,
1998
, “
Prediction of Femoral Fracture Load Using Automated Finite Element Modeling
,”
J. Biomech.
,
31
, pp.
125
133
.
32.
Keyak
,
J. H.
,
Fourkas
,
M. G.
,
Meagher
,
J. M.
, and
Skinner
,
H. B.
,
1993
, “
Validation of an Automated Method of 3-Dimensional Finite Element Modelling of Bone
,”
J. Biomed. Eng.
,
15
, pp.
505
509
.
33.
Lengsfeld
,
M.
,
Schmitt
,
J.
,
Alter
,
P.
,
Kaminsky
,
J.
, and
Leppek
,
R.
,
1998
, “
Comparison of Geometry-Based and CT Voxel-Based Finite Element Modelling and Experimental Validation
,”
Med. Eng. Phys.
,
20
, pp.
515
522
.
You do not currently have access to this content.