A biphasic-CLE-QLV model proposed in our recent study [2001, J. Biomech. Eng., 123, pp. 410–417] extended the biphasic theory of Mow et al. [1980, J. Biomech. Eng., 102, pp. 73–84] to include both tension-compression nonlinearity and intrinsic viscoelasticity of the cartilage solid matrix by incorporating it with the conewise linear elasticity (CLE) model [1995, J. Elasticity, 37, pp. 1–38] and the quasi-linear viscoelasticity (QLV) model [Biomechanics: Its foundations and objectives, Prentice Hall, Englewood Cliffs, 1972]. This model demonstrates that a simultaneous prediction of compression and tension experiments of articular cartilage, under stress-relaxation and dynamic loading, can be achieved when properly taking into account both flow-dependent and flow-independent viscoelastic effects, as well as tension-compression nonlinearity. The objective of this study is to directly test this biphasic-CLE-QLV model against experimental data from unconfined compression stress-relaxation tests at slow and fast strain rates as well as dynamic loading. Twelve full-thickness cartilage cylindrical plugs were harvested from six bovine glenohumeral joints and multiple confined and unconfined compression stress-relaxation tests were performed on each specimen. The material properties of specimens were determined by curve-fitting the experimental results from the confined and unconfined compression stress relaxation tests. The findings of this study demonstrate that the biphasic-CLE-QLV model is able to describe the strain-rate-dependent mechanical behaviors of articular cartilage in unconfined compression as attested by good agreements between experimental and theoretical curvefits (r2=0.966±0.032 for testing at slow strain rate; r2=0.998±0.002 for testing at fast strain rate) and predictions of the dynamic response r2=0.91±0.06. This experimental study also provides supporting evidence for the hypothesis that both tension-compression nonlinearity and intrinsic viscoelasticity of the solid matrix of cartilage are necessary for modeling the transient and equilibrium responses of this tissue in tension and compression. Furthermore, the biphasic-CLE-QLV model can produce better predictions of the dynamic modulus of cartilage in unconfined dynamic compression than the biphasic-CLE and biphasic poroviscoelastic models, indicating that intrinsic viscoelasticity and tension-compression nonlinearity of articular cartilage may play important roles in the load-support mechanism of cartilage under physiologic loading.

1.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network Reinforced Model of Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
,
121
, pp.
340
347
.
2.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
J. Biomech. Eng.
,
122
, pp.
576
586
.
3.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
4.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions from the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
J. Biomech. Eng.
,
108
, pp.
123
130
.
5.
DiSilvestro, M. R., Zhu, Q., and Suh, J.-K., 1999, “Biphasic Poroviscoelastic Theory Predicts the Strain Rate Dependent Viscoelastic Behavior of Articular Cartilage,” Proc. 1999 Bioeng. Conf., ASME BED-42, pp. 105–106.
6.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1985
, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage
,”
J. Biomech. Eng.
,
107
, pp.
206
218
.
7.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
,
23
, pp.
145
155
.
8.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Eels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
9.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
J. Biomech. Eng.
,
120
, pp.
491
496
.
10.
Fung, Y.-C. B., 1972, “Stress-Strain History Relation of Soft Tissues in Simple Elongation,” In Biomechanics: Its Foundations and Objectives, Prentice Hall, Englewood Cliffs, 1972.
11.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation with Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
12.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
,
113
, pp.
245
258
.
13.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors
,”
J. Biomech. Eng.
,
102
, pp.
169
180
.
14.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
, pp.
793
802
.
15.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P. A.
,
1990
, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
J. Biomech. Eng.
,
112
, pp.
414
425
.
16.
Wren
,
T. A.
, and
Carter
,
D. R.
,
1998
, “
A Microstructural Model for the Tensile Constitutive and Failure Behavior of Soft Skeletal Connective Tissues
,”
J. Biomech. Eng.
,
120
, pp.
55
61
.
17.
Bursac
,
P. M.
,
McGrath
,
C. V.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
2000
, “
A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression
,”
J. Biomech. Eng.
,
122
, pp.
347
353
.
18.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
19.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization At An Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
994
.
20.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage
,”
Ann. Biomed. Eng.
,
28
, pp.
150
159
.
21.
Bursac
,
P. M.
,
Obitz
,
T. W.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
1999
, “
Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis
,”
J. Biomech.
,
32
, pp.
1125
1130
.
22.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
, pp.
581
592
.
23.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of Unconfined Compression of Articular Cartilage
,”
J. Biomech.
,
106
, pp.
165
173
.
24.
Brown
,
T. D.
, and
Singerman
,
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
, pp.
597
605
.
25.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
,
1995
, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
,
28
, pp.
1055
1066
.
26.
Buschmann
,
M. D.
,
Kim
,
Y. J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
,
1999
, “
Stimulation of Aggrecan Synthesis in Cartilage Explants By Cyclic Loading Is Localized To Regions of High Interstitial Fluid Flow
,”
Arch. Biochem. Biophys.
,
366
, pp.
1
7
.
27.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis
,”
J. Biomech.
,
20
, pp.
703
714
.
28.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage-Part II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
, pp.
853
861
.
29.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparisons of in situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
30.
Hale
,
J. E.
,
Rudert
,
M. J.
, and
Brown
,
T. D.
,
1993
, “
Indentation Assessment of Biphasic Mechanical Property Deficits in Size-Dependent Osteochondral Defect Repair
,”
J. Biomech.
,
26
, pp.
1319
1325
.
31.
Mow
,
V. C.
,
Good
,
P. M.
, and
Gardner
,
T. R.
,
2000
, “
A New Method To Determine the Tensile Properties of Articular Cartilage Using the Indentation Test
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
25
, p.
103
103
.
32.
Suh
,
J. K.
, and
Bai
,
S.
,
1997
, “
Biphasic Poroviscoelastic Behavior of Articular Cartilage in Creep Indentation Test
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
22
, p.
823
823
.
33.
Woo
,
S. L.-Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1980
, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
J. Biomech. Eng.
,
102
, pp.
85
90
.
34.
Huang
,
C.-Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-independent Viscoelasticity In The Tensile Response of Biphasic Articular Cartilage
,”
J. Biomech. Eng.
,
123
, pp.
410
417
.
35.
Curnier
,
A.
,
He
,
Q.-C.
, and
Zysset
,
P.
,
1995
, “
Conewise Linear Elastic Materials
,”
J. Elast.
,
37
, pp.
1
38
.
36.
Khalsa
,
P. S.
, and
Eisenberg
,
S. R.
,
1997
, “
Compressive Behavior of Articular Cartilage Is Not Completely Explained by Proteoglycan Osmotic Pressure
,”
J. Biomech.
,
30
, pp.
589
594
.
37.
Kvalseth
,
T. O.
,
1985
, “
Cautionary Note About R2,
Am. Stat.
,
39
, pp.
279
285
.
38.
Buschmann
,
M. D.
,
1997
, “
Numerical Conversion of Transient to Harmonic Response Functions for Linear Viscoelastic Materials
,”
J. Biomech.
,
30
, pp.
197
202
.
39.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphasic Model
,”
J. Biomech. Eng.
,
122
, pp.
189
195
.
40.
Mak
,
A. F.
,
1986
, “
Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
,
23
, pp.
371
383
.
You do not currently have access to this content.