Implant separation from bone tissue, resulting in the necessity for revision surgery, is a serious drawback of cementless total joint replacement. Unnatural stress distribution around the implant is considered the main reason for the failure. Optimization of the implant properties, especially its geometric parameters, is believed to be the right way to improve reliability of joint prosthetics. An efficient numerical model of the femur–implant system is presented in the paper, including the finite element formulation featuring computation of sensitivity gradients, parametric mesh generator, and a gradient-based optimization scheme. Numerical examples show results of shape optimization of an implant for two sets of design parameters and for the initial stability criterion taken as the optimization goal. The optimum shape appears to be relatively long and proximally porous-coated on about half of its length. The method can be flexibly adjusted to various implant types, stress- and displacement-based optimum criteria, and geometric design parameters.

1.
Raut
,
V. V.
,
Siney
,
P. D.
, and
Wroblewski
,
B. M.
,
1995
, “
Revision for Aseptic Stem Loosening Using the Cemented Charnley Prosthesis
,”
J. Bone Joint Surg. Br.
,
77-B
, pp.
23
27
.
2.
Raut
,
V. V.
,
Siney
,
P. D.
, and
Wroblewski
,
B. M.
,
1995
, “
Cemented Revision for Aseptic Acetabular Loosening
,”
J. Bone Joint Surg. Br.
,
77-B
, pp
357
361
.
3.
Malchau
,
H.
,
Herberts
,
P.
, and
Ahnfelt
,
L.
,
1993
, “
Prognosis of Total Hip Replacement in Sweden. Follow-up of 92675 Operations Performed 1978–1990
,”
Acta Orthop. Scand.
,
64
, pp.
497
506
.
4.
Huiskes, R., and Verdonschot, N., 1997, “Biomechanics of Artificial Joints: The Hip,” in: V. C. Mow and W. C. Hayes, eds., Basic Orthopaedic Biomechanics, 2nd ed., Lippincott-Raven, Philadelphia, pp. 395–460.
5.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.
6.
Cristofolini
,
L.
,
1997
, “
A Critical Analysis of Stress-Shielding Evaluation of Hip Prostheses
,”
Crit. Rev. Biomed. Eng.
,
25
, pp.
409
483
.
7.
Zienkiewicz, O. C., 1977, The Finite Element Method, McGraw-Hill, New York.
8.
Prendergast
,
P. J.
,
1997
, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech. (Los Angel. Calif.)
,
12
, pp.
343
366
.
9.
Yang
,
R. J.
,
Choi
,
K. K.
,
Crowinshield
,
R. D.
, and
Brand
,
R. A.
,
1984
, “
Design Sensitivity Analysis: A New Method for Implant Design and a Comparison With Parametric Finite Element Analysis
,”
J. Biomech.
,
17
, pp.
849
854
.
10.
Huiskes
,
R.
, and
Boeklagen
,
R.
,
1989
, “
Mathematical Shape Optimization of Hip Prosthesis Design
,”
J. Biomech.
,
22
, pp.
793
804
.
11.
Hedia
,
H. S.
,
Barton
,
D. C.
,
Fisher
,
J.
, and
Ibrahim
,
A.
,
1996
, “
Shape Optimisation of a Charnley Prosthesis Based on the Fatigue Notch Factor
,”
Biomed. Mater. Eng.
,
6
, pp.
199
217
.
12.
Hedia
,
H. S.
,
Barton
,
D. C.
, and
Fisher
,
J.
,
1997
, “
Material Optimisation of the Femoral Component of a Hip Prosthesis Based on the Fatigue Notch Factor Approach
,”
Biomed. Mater. Eng.
,
7
, pp.
83
98
.
13.
Kuiper
,
J. H.
, and
Huiskes
,
R.
,
1997
, “
Mathematical Optimization of Elastic Properties: Application to Cementless Hip Stem Design
,”
ASME J. Biomech. Eng.
,
119
, pp.
166
174
.
14.
Chang
,
P. B.
,
Williams
,
B. J.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
,
1999
, “
Robust Optimization of Total Joint Replacements Incorporating Environmental Variables
,”
ASME J. Biomech. Eng.
,
121
, pp.
304
310
.
15.
Martin, R. B., Burr, D. B., and Sharkey, N. A. 1988, Skeletal Tissue Mechanics, Springer, New York.
16.
Martens
,
M.
,
Van Audekercke
,
R.
,
Delport
,
P.
,
De Meester
,
P.
, and
Mulier
,
J. C.
,
1983
, “
The Mechanical Characteristics of Cancellous Bone at the Upper Femoral Region
,”
J. Biomech.
,
16
, pp.
971
983
.
17.
Hobatho, M.-C., Rho, J. Y., and Ashman, R. B., 1997, “Anatomical Variation of Human Cancellous Bone Mechanical Properties in Vitro,” in: G. Lowet et al., eds., Bone Research in Biomechanics, IOS Press.
18.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
,
1988
, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
,
21
, pp.
155
168
.
19.
Tokarzewski
,
S.
,
Telega
,
J. J.
, and
Gal̸ka
,
A.
,
1999
, “
A Contribution to Evaluation of Effective Moduli of Trabecular Bone With Rod-like Microstructure
,”
J. Theor. Appl. Mech.
,
37
, pp.
707
728
.
20.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
,
59A
, pp.
954
962
.
21.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1999
, “
The Elastic Properties of Trabecular and Cortical Bone Tissues are Similar: Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
,
32
, pp.
437
441
.
22.
Carter
,
D. R.
,
Orr
,
T. E.
, and
Fyhrie
,
D. P.
,
1989
, “
Relationships Between Loading History and Femoral Cancellous Bone Architecture
,”
J. Biomech.
,
22
, pp.
231
244
.
23.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
,
1986
, “
Observation on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
,
208
, pp.
108
113
.
24.
Rohlmann
,
A.
,
Cheal
,
E. J.
,
Hayes
,
W. C.
, and
Bergmann
,
G.
,
1988
, “
A Nonlinear Finite Element Analysis of Interface Conditions in Porous Coated Hip Endoprostheses
,”
J. Biomech.
,
21
, pp.
605
611
.
25.
Kowalczyk
,
P.
,
1994
, “
Finite-Deformation Interface Formulation for Frictionless Contact Problems
,”
Commun. Num. Meth. Eng.
,
10
, pp.
879
893
.
26.
Kleiber, M., Antu´nez, H., Hien, T. D., and Kowalczyk, P., 1997, Parameter Sensitivity in Nonlinear Mechanics, Wiley, Chichester.
27.
Schittkowski
,
K.
,
1986
, “
NLQPL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Operat. Res.
,
5
, pp.
485
500
.
28.
Culleton
,
T. P.
,
Prendergast
,
P. J.
, and
Taylor
,
D.
,
1993
, “
Fatigue Failure in the Cement Mantle of an Artificial Joint
,”
Clin. Mat.
,
12
, pp.
95
102
.
You do not currently have access to this content.