Collagen mechanics are crucial to the function and dysfunction of many tissues, including blood vessels and articular cartilage, and bioartificial tissues. Previous attempts to develop computer simulations of collagenous tissue based on macroscopic property descriptions have often been limited in application by the simplicity of the model; simulations based on microscopic descriptions, in contrast, have numerical limitations imposed by the size of the mathematical problem. We present a method that combines the tractability of the macroscopic approach with the flexibility of the microstructural approach. The macroscopic domain is divided into finite elements (as in standard FEM). Each element contains a microscopic scale network. Instead of a stress constitutive equation; the macroscopic problem is distributed over the microscopic scale network and solved in each element to satisfy the weak formulation of Cauchy’s stress continuity equation over the macroscopic domain. The combined method scales by order 1.1 as the overall number of degrees of freedom is increased, allowing it to handle larger problems than a direct microstructural approach. Model predictions agree qualitatively with tensile tests on isotropic and aligned reconstituted type I collagen gels.

1.
Silver, F. H., 1987, Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissues, New York University Press, New York.
2.
Tuderman
,
L.
, and
Bruckner
,
P.
,
1998
, “
Genetic Diseases of the Extracellular Matrix: More Than Just Connective Tissue Disorders
,”
J. Mol. Med.
,
76
, pp.
226
237
.
3.
Bell
,
E.
,
Ivarsson
,
B.
, and
Merrill
,
C.
,
1979
, “
Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential in Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
,
76
, pp.
1274
1278
.
4.
Lopez Valle
,
C. A.
,
Auger
,
F. A.
,
Rompre
,
P.
,
Bouvard
,
V.
, and
Germain
,
L.
,
1992
, “
Peripheral Anchorage of Dermal Equivalents
,”
Br. J. Dermatol.
,
127
, pp.
365
371
.
5.
Parenteau
,
N.
,
Sabolinski
,
M.
,
Nolte
,
C.
,
Oleson
,
M.
,
Kriwet
,
K.
, and
Bilbo
,
P.
,
1996
, “
Biological and Physical Factors Influencing the Successful Engraftment of a Cultured Human Skin Substitute
,”
Biotechnol. Bioeng.
,
52
, pp.
3
14
.
6.
Tranquillo
,
R. T.
,
Girton
,
T. S.
,
Bromberek
,
B. A.
,
Triebes
,
T. G.
, and
Mooradian
,
D. L.
,
1996
, “
Magnetically-Oriented Tissue-Equivalent Tubes: Application to a Circumferentially-Oriented Media-Equivalent
,”
Biomaterials
,
17
, p.
349
349
.
7.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag. New York.
8.
Lanir
,
Y.
,
1982
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
18
, pp.
1
12
.
9.
Shoemaker
,
P. A.
,
Schneider
,
D.
,
Lee
,
M. C.
, and
Fung
,
Y.
,
1986
, “
A Constitutive Model for Two-Dimensional Soft Tissues and Its Application to Experimental Data
,”
J. Biomech.
,
19
, pp.
695
702
.
10.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
11.
Simon
,
B. R.
,
Liable
,
J. P.
,
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
M. H.
,
1996
, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
118
, pp.
1
9
.
12.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P. A.
,
1990
, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
112
, pp.
414
425
.
13.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
, pp.
340
347
.
14.
Schwartz
,
M. H.
,
Leo
,
P. H.
, and
Lewis
,
J. L.
,
1994
, “
A Microstructural Model for the Elastic Response of Articular Cartilage
,”
J. Biomech.
,
27
, pp.
865
873
.
15.
Hollister
,
S. J.
,
Fyrhie
,
D. P.
,
Jepsen
,
K. J.
, and
Goldstein
,
S. A.
,
1991
, “
Application of Homogenization Theory to the Study of Trabecular Bone Mechanics
,”
J. Biomech.
,
24
, pp.
825
839
.
16.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
,
1994
, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
,
27
, pp.
433
444
.
17.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
ASME J. Biomech. Eng.
,
119
, pp.
137
145
.
18.
Sherratt
,
J. A.
, and
Lewis
,
J.
,
1993
, “
Stress-Induced Alignment of Actin Filaments and the Mechanics of Cytogel
,”
Bull. Math. Biol.
,
55
, pp.
637
654
.
19.
Dembo
,
M.
, and
Harlow
,
F.
,
1986
, “
Cell Motion, Contractile Networks, and the Physics of Interpenetrating Reactive Flow
,”
Biophys. J.
,
50
, pp.
109
121
.
20.
Stamenovic
,
D.
,
Fredberg
,
J. J.
,
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
,
1996
, “
A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity
,”
J. Theor. Biol.
,
181
, pp.
125
136
.
21.
Strang, W. G., and Fix, J. G., 1973, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.
22.
Gill
,
P. E.
,
Jay
,
L. O.
,
Leonard
,
M. W.
,
Petzold
,
L. R.
, and
Sharma
,
V.
,
2000
, “
An SQP Method for the Optimal Control of Large-Scale Dynamical Systems
,”
J. Comput. Appl. Math.
,
120
, pp.
197
213
.
23.
Gill, P., Murray, W., and Saunders, M. A., 1998, “SNOPT: a FORTRAN Package for Large-Scale Nonlinear Programming.”
24.
Draper, N. R., and Smith, H., 1966, Applied Regression Analysis, Wiley, New York.
25.
Guido
,
S.
, and
Tranquillo
,
R. T.
,
1993
, “
A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Gels: Correlation of Fibroblast Orientation and Gel Birefringence
,”
J. Cell. Sci.
,
105
, pp.
317
331
.
26.
Klebe
,
R. J.
,
Caldwell
,
H.
, and
Milam
,
S.
,
1990
, “
Cells Transmit Spatial Information by Orienting Collagen-Fibers
,”
Matrix
,
9
, pp.
451
458
.
27.
Bergren, T. E., 1993, “Controlling the Material Properties of in Vitro Collagen Through Directed Orientation and Cross-Linking of Fibrils,” Ph.D. Thesis, Department of Aerospace Engineering, University of Colorado, Boulder, CO.
28.
Hibbeler, R. C., 1994, Mechanics of Materials, MacMillan College Publishing Company.
29.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
30.
Knapp
,
D. M.
,
Barocas
,
V. H.
,
Moon
,
A. G.
,
Yoo
,
K.
,
Petzold
,
L. R.
, and
Tranquillo
,
R. T.
,
1997
, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheol.
,
41
, pp.
971
993
.
31.
Grinnell
,
F.
, and
Lamke
,
C. R.
,
1984
, “
Reorganization of Hydrated Collagen Lattices by Human Skin Fibroblasts
,”
J. Cell. Sci.
,
66
, pp.
51
63
.
You do not currently have access to this content.