Toward developing a transducer for measuring in vivo tension in anterior cruciate ligament grafts in humans, the objectives of this study were to determine the following: (1) whether the calibration of a previously reported femoral fixation device transducer (FDT) (Ventura et al., 1998) is affected by the presence of the graft when implanted in the tibial metaphysis of an ovine model, (2) whether the FDT remains calibrated at 4 weeks postoperatively, and (3) whether the biological incorporation of the graft occurs prior to a change in the FDT calibration. The FDT was implanted in the hind limb of five sheep using an extra-articular procedure. Both the proximal common digital extensor tendon (i.e., graft) and a Teflon-coated wire were looped around the FDT inside a tunnel in the tibial metaphysis. The FDT was calibrated on three occasions using the loop of wire: once intraoperatively before graft insertion, once intraoperatively after graft insertion, and once postoperatively after the animals had been sacrificed at 4 weeks. Following sacrifice, the load transmitted to the FDT by the graft was also determined. The FDT exhibited linear calibration intraoperatively both before and after graft insertion with an average error relative to the calibration before insertion of the graft of −4.6 percent of full-scale load (150 N) and this average relative error was not significantly different from zero p=0.183. After 4 weeks of implantation, the average relative percent error was −5.0 percent and was not significantly different from zero p=0.434 indicating that the FDT remained calibrated in the in vivo environment. Because only 15 percent of the graft tension was transmitted to the FDT after 4 weeks, biological incorporation of the graft preceded the loss of calibration. In light of these findings, the FDT offers the capability of measuring the intra-articular ACL graft tension in vivo in animal models and possibly humans before the biological bond develops and also of monitoring the formation and maturation of the biological bond between a graft and bone tunnel.

1.
Magen
,
H. E.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts
,”
Am. J. Sports Med.
,
27
, pp.
35
43
.
2.
Howell
,
S. M.
, and
Hull
,
M. L.
,
1998
, “
Aggressive Rehabilitation Using Hamstring Tendons: Graft Construct, Tibial Tunnel Placement, Fixation Properties, and Clinical Outcome
,”
Am. J. Knee Surgery
,
11
, pp.
120
127
.
3.
Halling
,
A. H.
,
Howard
,
M. E.
, and
Cawley
,
P. W.
,
1993
, “
Rehabilitation of Anterior Cruciate Ligament Injuries
,”
Clin. Sports Med.
,
12
, pp.
329
348
.
4.
Noyes
,
F. R.
,
Mangine
,
R. E.
, and
Barber
,
S.
,
1987
, “
Early Knee Motion After Open and Arthroscopic Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
15
, pp.
149
160
.
5.
Ventura
,
C. P.
,
Wolchok
,
J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
1998
, “
An Implantable Transducer for Measuring Tension in an Anterior Cruciate Ligament Graft
,”
ASME J. Biomech. Eng.
,
120
, pp.
327
333
.
6.
McKee
,
E. L.
,
Lindsey
,
D. P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
1998
, “
Telemetry System for Monitoring Anterior Cruciate Ligament Graft Forces in Vivo
,”
Med. Biol. Eng. Comput.
,
36
, pp.
330
336
.
7.
Lindsey
,
D. P.
,
McKee
,
E. L.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
1998
, “
A New Technique for Transmission of Signals From Implantable Transducers
,”
IEEE Trans. Biomed. Eng.
,
45
, pp.
614
619
.
8.
Rodeo
,
S. A.
,
Arnoczky
,
S. P.
,
Torzilli
,
P. A.
,
Hidaka
,
C.
, and
Warren
,
R. F.
,
1993
, “
Tendon-Healing in a Bone Tunnel. A Biomechanical and Histological Study in the Dog
,”
J. Bone Jt. Surg., Am. Vol.
,
75
, pp.
1795
1803
.
9.
Holden
,
J. P.
,
Grood
,
E. S.
,
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Butler
,
D. L.
, and
Bylski-Austrow
,
D. I.
,
1994
, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
,
27
, pp.
517
526
.
10.
Frank
,
C. B.
, and
Jackson
,
D. W.
,
1997
, “
The Science of Reconstruction of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg., Am. Vol.
,
79
, pp.
1556
1576
.
11.
Lundberg
,
W. R.
,
Lewis
,
J. L.
,
Smith
,
J. J.
,
Lindquist
,
C.
,
Meglitsch
,
T.
,
Lew
,
W. D.
, and
Poff
,
B. C.
,
1997
, “
In Vivo Forces During Remodeling of a Two-Segment Anterior Cruciate Ligament Graft in a Goat Model
,”
J. Orthop. Res.
,
15
, pp.
645
651
.
12.
To, J. T., 1996, “Biomechanical Properties of the Double Loop Hamstring Graft and Three Anterior Cruciate Ligament Graft Fixations,” MS Thesis, Department of Mechanical Engineering, University of California at Davis.
13.
To
,
J. T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
Contributions of Femoral Fixation Methods to the Stiffness of Anterior Cruciate Ligament Replacements at Implantation
,”
Arthroscopy
,
15
, pp.
379
387
.
14.
Martin, R. B., and Burr, D. B., 1989, Structure, Function, and Adaptation of Compact Bone, Raven Press, New York.
15.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Cha
,
C. W.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
,
1996
, “
Biomechanical Consequences of Replacement of the Anterior Cruciate Ligament With a Patellar Ligament Allograft. Part II: Forces in the Graft Compared With Forces in the Intact Ligament
,”
J. Bone Jt. Surg., Am. Vol.
,
78
, pp.
1728
1734
.
16.
Ding
,
M.
,
Dalstra
,
M.
,
Danielsen
,
C. C.
,
Kabel
,
J.
,
Hvid
,
I.
, and
Linde
,
F.
,
1997
, “
Age Variations in the Properties of Human Tibial Trabecular Bone
,”
J. Bone Joint Surg. Br.
,
79
, pp.
995
1002
.
17.
Green
,
J. R.
,
Nemzek
,
J. A.
,
Arnoczky
,
S. P.
,
Johnson
,
L. L.
, and
Balas
,
M. S.
,
1999
, “
The Effect of Bone Compaction on Early Fixation of Porous-Coated Implants
,”
J. Arthroplasty
,
14
, pp.
91
97
.
18.
Magen, H. E., 1997, “Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts,” MS Thesis, Biomedical Engineering Program, University of California at Davis.
You do not currently have access to this content.