This study investigated the abilities of the linear biphasic poroviscoelastic (BPVE) model and the linear biphasic poroelastic (BPE) model to simulate the effect of variable ramp strain rates on the unconfined compression stress relaxation response of articular cartilage. Curve fitting of experimental data showed that the BPVE model was able to successfully account for the ramp strain rate-dependent viscoelastic behavior of articular cartilage under unconfined compression, while the BPE model was able to account for the complete viscoelastic response at a slow strain rate, but only the long-term viscoelastic response at faster strain rates. We concluded that the short-term viscoelastic behavior of articular cartilage, when subjected to a fast ramp strain rate, is primarily governed by a fluid flow-independent (intrinsic) viscoelastic mechanism, whereas the long-term viscoelastic behavior is governed by a fluid flow-dependent (biphasic) viscoelastic mechanism. Furthermore, a linear viscoelastic representation of the solid stress was found to be a valid model assumption for the simulation of ramp strain rate-dependent relaxation behaviors of articular cartilage within the range of ramp strain rates investigated.

1.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J-K. F.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage—I: Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
,
123
, No.
2
, pp.
191
197
.
2.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
3.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
, pp.
491
496
.
4.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
, pp.
123
130
.
5.
Suh
,
J-K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
195
201
.
6.
Brown
,
T. D.
, and
Singerman
,
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
, No.
8
, pp.
597
605
.
7.
Joshi
,
M. D.
,
Suh
,
J-K.
,
Marui
,
T.
, and
Woo
,
S. L-Y.
,
1995
, “
Interspecies Comparison of Mechanical Properties of Meniscus
,”
J. Biomed. Mater. Res.
,
29
, pp.
823
828
.
8.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
, pp.
341
359
.
9.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
, pp.
165
173
.
10.
Suh
,
J-K.
, and
DiSilvestro
,
M. R.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME Journal of Applied Mechanics
,
66
, pp.
528
535
.
11.
Suh
,
J-K.
,
Spilker
,
R. L.
, and
Holmes
,
M. H.
,
1991
, “
A Penalty Finite Element Analysis for Nonlinear Mechanics of Biphasic Hydrated Soft Tissue Under Large Deformation
,”
International Journal of Numerical Methods in Engineering
,
32
, pp.
1411
1439
.
12.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
,
23
, No.
2
, pp.
145
155
.
13.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
,
1981
, “
Effects of Nonlinear Strain Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
103
, pp.
61
66
.
14.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
, No.
3
, pp.
235
241
.
15.
Mansour
,
J. M.
, and
Mow
,
V. C.
,
1976
, “
The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures
,”
J. Bone Jt. Surg., Am. Vol.
,
58-A
, No.
4
, pp.
509
516
.
16.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
, Nos.
8/9
, pp.
853
861
.
17.
DiSilvestro, M. R., and Suh, J.-K. F., “A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression,” in print.
You do not currently have access to this content.