A biphasic, anisotropic elastic model of the aortic wall is developed and compared to literature values of experimental measurements of vessel wall radii, thickness, and hydraulic conductivity as a function of intraluminal pressure. The model gives good predictions using a constant wall modulus for pressures less than 60 mmHg, but requires a strain-dependent modulus for pressures greater than this. In both bovine and rabbit aorta, the tangential modulus is found to be approximately 20 times greater than the radial modulus. These moduli lead to predictions that, when perfused in a cylindrical geometry, the aortic volume and its specific hydraulic conductivity are relatively independent of perfusion pressure, in agreement with experimental measurements. M, the parameter that relates specific hydraulic conductivity to tissue dilation, is found to be a positive quantity correcting a previous error in the literature.

1.
Vargas
,
C. B.
,
Vargas
,
F. F.
,
Pribyle
,
J. G.
, and
Blackshear
,
B. L.
,
1979
, “
Hydraulic Conductivity of the Endothelial and Outer Layers of Rabbit Aorta
,”
Am. J. Physiol.
,
236
, pp.
H53–H60
H53–H60
.
2.
Fry
,
D. L.
,
1983
, “
Effect of Pressure and Stirring on the in Vitro Aortic Transmural 125I-Albumin Transport
,”
Am. J. Physiol.
,
245
, pp.
H977–H991
H977–H991
.
3.
Parker
,
K. H.
, and
Winlove
,
C. P.
,
1984
, “
The Macromolecular Basis of the Hydraulic Conductivity of the Arterial Wall
,”
Biorheology
,
21
, pp.
181
196
.
4.
Tedgui
,
A.
, and
Lever
,
M.
,
1985
, “
The Interaction of Convection and Diffusion in the Transport of 131I-Albumin Within the Media of the Rabbit Thoracic Aorta
,”
Circ. Res.
,
57
, pp.
856
863
.
5.
Klanchar
,
M.
, and
Tarbell
,
J.
,
1987
, “
Modeling Water Flow Through Arterial Tissue
,”
Bull. Math. Biol.
,
49
, pp.
651
669
.
6.
Baldwin
,
A.
,
Wilson
,
L.
, and
Simon
,
B.
,
1992
, “
Effect of Pressure on Aortic Hydraulic Conductivity
,”
Arterioscler. Thromb.
,
12
, pp.
163
171
.
7.
Kim
,
W.-K.
, and
Tarbell
,
J.
,
1994
, “
Macromolecular Transport Through the Deformable Porous Media of an Artery Wall
,”
ASME J. Biomech. Eng.
,
116
, pp.
156
163
.
8.
Simon
,
B.
,
Kaufmann
,
M.
,
McAfee
,
M.
,
Baldwin
,
A.
, and
Wilson
,
L.
,
1998
, “
Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries
,”
ASME J. Biomech. Eng.
,
120
, pp.
188
194
.
9.
Bergel
,
D. H.
,
1961
, “
The Static Elastic Properties of the Arterial Wall
,”
J. Physiol. (Lond)
,
156
, pp.
445
457
.
10.
Fenn, W. O., 1957, “Changes in Length of Blood Vessels on Inflation,” in: Tissue Elasticity, J. W. Remington, ed., American Physiological Society, Washington, DC, pp. 154–167.
11.
Tickner
,
E. G.
, and
Sacks
,
A. H.
,
1967
, “
A Theory for the Static Elastic Behavior of Blood Vessels
,”
Biorheology
,
4
, pp.
151
168
.
12.
Whale
,
M. D.
,
Grodzinsky
,
A. J.
, and
Johnson
,
M.
,
1996
, “
The Effect of Aging and Pressure on the Specific Hydraulic Conductivity of the Aortic Wall
,”
Biorheology
,
33
, pp.
17
44
.
13.
Kenyon
,
D. E.
,
1979
, “
A Mathematical Model of Water Flux Through Aortic Tissue
,”
Bull. Math. Biol.
,
41
, pp.
79
90
.
14.
Whale
,
M. D.
,
Grodzinsky
,
A. J.
, and
Johnson
,
M.
,
1996
, “
The Effects of Age and Pressure on the Specific Hydraulic Conductivity of the Aortic Wall
,”
Biorheology
,
33
, pp.
17
44
.
15.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
, pp.
850
858
.
16.
Lehknitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Body, Holden-Day, San Francisco, CA.
17.
Levick
,
J. R.
,
1987
, “
Flow Through Interstitum and Other Fibrous Matrices
,”
Q. J. Exp. Physiol. (1981)
,
72
, pp.
409
437
.
18.
Lai
,,
W.
and
Mow
,
V.
,
1980
, “
Drag Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
, pp.
111
123
.
19.
Baldwin
,
A.
, and
Wilson
,
L.
,
1993
, “
Endothelium Increases Medial Hydraulic Conductance of Aorta, Possibly by Release of EDRF
,”
Am. J. Physiol.
,
264
, pp.
H26–H32
H26–H32
.
20.
McDonald, D. A., 1974, “The Elastic Properties of the Arterial Wall,” in: Blood Flow in Arteries, Williams and Wilkins Co., Baltimore, MD, pp. 238–282.
21.
Dhar
,
P.
,
Jayaraman
,
G.
,
Karmakar
,
N.
, and
Manchanda
,
S.
,
1996
, “
Effect of Pressure on Transmural Fluid Flow in Different De-Endothelialised Arteries
,”
Med. Biol. Eng. Comput.
,
34
, pp.
155
159
.
22.
Tedgui
,
A.
, and
Lever
,
M. J.
,
1984
, “
Filtration Through Damaged and Undamaged Rabbit Thoracic Aorta
,”
Am. J. Physiol.
,
247
, pp.
H784–H791
H784–H791
.
23.
Huang
,
Y.
,
Rumschitzki
,
D.
,
Chien
,
S.
, and
Weinbaum
,
S.
,
1997
, “
A Fiber Matrix Model for the Filtration Through Fenestral Pores in a Compressible Arterial Intima
,”
Am. J. Physiol.
,
272
, pp.
H2023–H2039
H2023–H2039
.
24.
Ethier
,
C. R.
,
1986
, “
The Hydrodynamic Resistance of Hyaluronic Acid: Estimates From Sedimentation Studies
,”
Biorheology
,
23
, pp.
99
113
.
You do not currently have access to this content.