This study characterized the geometry and mechanical properties of the cervical ligaments from C2–T1 levels. The lengths and cross-sectional areas of the anterior longitudinal ligament, posterior longitudinal ligament, joint capsules, ligamentum flavum, and interspinous ligament were determined from eight human cadavers using cryomicrotomy images. The geometry was defined based on spinal anatomy and its potential use in complex mathematical models. The biomechanical force-deflection, stiffness, energy, stress, and strain data were obtained from 25 cadavers using in situ axial tensile tests. Data were grouped into middle (C2–C5) and lower (C5–T1) cervical levels. Both the geometric length and area of cross section, and the biomechanical properties including the stiffness, stress, strain, energy, and Young’s modulus, were presented for each of the five ligaments. In both groups, joint capsules and ligamentum flavum exhibited the highest cross-sectional area p<0.005, while the longitudinal ligaments had the highest length measurements. Although not reaching statistical significance, for all ligaments, cross-sectional areas were higher in the C5–T1 than in the C2–C5 group; and lengths were higher in the C2–C5 than in the C5–T1 group with the exception of the flavum (Table 1 in the main text). Force-deflection characteristics (plots) are provided for all ligaments in both groups. Failure strains were higher for the ligaments of the posterior (interspinous ligament, joint capsules, and ligamentum flavum) than the anterior complex (anterior and posterior longitudinal ligaments) in both groups. In contrast, the failure stress and Young’s modulus were higher for the anterior and posterior longitudinal ligaments compared to the ligaments of the posterior complex in the two groups. However, similar tendencies in the structural responses (stiffness, energy) were not found in both groups. Researchers attempting to incorporate these data into stress-analysis models can choose the specific parameter(s) based on the complexity of the model used to study the biomechanical behavior of the human cervical spine. [S0148-0731(00)01006-2]

1.
Yoganandan
,
N.
,
Myklebust
,
J. B.
,
Ray
,
G.
, and
Sances
,
A.
, Jr.
,
1987
, “
Mathematical and Finite Element Analysis of Spinal Injuries
,”
CRC Crit. Rev. Biomed. Eng.
,
15
, pp.
29
93
.
2.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F.
,
1996
, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
,
21
, pp.
1824
1834
.
3.
Dumas
,
G. A.
,
Beaudoin
,
L.
, and
Drouin
,
G.
,
1987
, “
In Situ Mechanical Behavior of Posterior Spinal Ligaments in the Lumbar Region. An in Vitro Study
,”
J. Biomech.
,
20
, pp.
301
310
.
4.
Chazal
,
J.
,
Tanguy
,
A.
, and
Bourges
,
M.
,
1985
, “
Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction
,”
J. Biomech.
,
18
, pp.
167
176
.
5.
Myklebust
,
J. B.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Cusick
,
J. F.
,
Maiman
,
D. J.
,
Myers
,
T.
, and
Sances
,
A.
, Jr.
,
1988
, “
Tensile Strength of Spinal Ligaments
,”
Spine
,
13
, pp.
526
531
.
6.
Neumann
,
P.
,
Keller
,
T. S.
,
Ekstrom
,
L.
,
Perry
,
L.
, and
Hannson
,
T. H.
,
1992
, “
Mechanical Properties of the Human Lumbar Anterior Longitudinal Ligament
,”
J. Biomech.
,
25
, pp.
1185
1194
.
7.
Gilbertson
,
L. G.
,
Goel
,
V. K.
,
Kong
,
W. Z.
, and
Clausen
,
J. D.
,
1995
, “
Finite Element Methods in Spine Biomechanics Research
,”
CRC Crit. Rev. Biomed. Eng.
,
23
, pp.
411
473
.
8.
Clausen, J. D., 1996, “Experimental and Theoretical Investigation of Cervical Spine Biomechanics: Effects of Injury and Stabilization,” Ph.D. Dissertation, University of Iowa, Iowa City.
9.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: a Material Property Sensitivity Study
,”
Clin. Biomech.
,
14
, pp.
41
53
.
10.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1998
, “
Finite Element Modeling Approaches of Human Cervical Spine Facet Joint Capsule
,”
J. Biomech.
,
31
, pp.
371
376
.
11.
Kumaresan
,
S.
,
Yoganandan
,
N.
,
Pintar
,
F.
,
Voo
,
L.
,
Cusick
,
J.
, and
Larson
,
S.
,
1997
, “
Finite Element Modeling of Cervical Laminectomy With Graded Facetectomy
,”
J. Spinal Disord.
,
10
, pp.
40
47
.
12.
Goel
,
V. K.
, and
Clausen
,
J. D.
,
1998
, “
Prediction of Load Sharing Among Spinal Components of a C5–C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
, pp.
684
691
.
13.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Myers
,
T.
,
Elhagediab
,
A.
, and
Sances
,
A.
, Jr.
,
1992
, “
Biomechanical Properties of Human Lumbar Spine Ligaments
,”
J. Biomech.
,
25
, pp.
1351
1356
.
14.
Panjabi
,
M. M.
,
Oxland
,
T. R.
, and
Parks
,
E. H.
,
1991
, “
Quantitative Anatomy of Cervical Ligaments. Part II. Middle and Lower Cervical Spine
,”
J. Spinal Disord.
,
4
, pp.
276
285
.
15.
Przybylski
,
G. J.
,
Patel
,
P. R.
,
Carlin
,
G. J.
, and
Woo
,
S. L. Y.
,
1998
, “
Quantitative Anthropometry of the Subatlantal Cervical Longitudinal Ligaments
,”
Spine
,
23
, pp.
893
898
.
16.
Yoganandan
,
N.
,
Ray
,
G.
,
Pintar
,
F. A.
,
Myklebust
,
J. B.
, and
Sances
,
A.
, Jr.
,
1989
, “
Stiffness and Strain Energy Criteria to Evaluate the Threshold of Injury to an Intervertebral Joint
,”
J. Biomech.
,
22
, pp.
135
142
.
17.
Yoganandan
,
N.
,
Myklebust
,
J. B.
,
Wilson
,
C. R.
,
Cusick
,
J. F.
, and
Sances
,
A.
, Jr.
,
1988
, “
Functional Biomechanics of the Thoracolumbar Vertebral Cortex
,”
Clin. Biomech.
,
3
, pp.
11
18
.
18.
Yoganandan, N., Pintar, F. A., Larson, S. J., and Sances, A., Jr., eds., 1998, Frontiers in Head and Neck Trauma: Clinical and Biomechanical, IOS Press, The Netherlands.
19.
Yoganandan
,
N.
,
Larson
,
S. J.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
,
Reinartz
,
J.
, and
Sances
,
A.
, Jr.
,
1990
, “
Biomechanics of Lumbar Pedicle Screw/Plate Fixation in Trauma
,”
Neurosurgery
,
27
, pp.
873
881
.
20.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1997
, “
Methodology to Quantify the Uncovertebral Joint in the Human Cervical Spine
,”
J. Musculoskel. Res.
,
1
, pp.
1
9
.
21.
Trojan
,
D. A.
,
Pouchot
,
J.
,
Pokrupa
,
R.
,
Ford
,
R. M.
,
Adamsbaum
,
C.
,
Hill
,
R. O.
, and
Esdaile
,
J. M.
,
1992
, “
Diagnosis and Treatment of Ossification of the Posterior Longitudinal Ligament of the Spine: Report of Eight Cases and Literature Review
,”
Am. J. Med.
,
92
, pp.
296
306
.
22.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Butler
,
J.
,
Reinartz
,
J.
,
Sances
,
A.
, Jr.
, and
Larson
,
S. J.
,
1989
, “
Dynamic Response of Human Cervical Spine Ligaments
,”
Spine
,
14
, pp.
1102
1110
.
23.
Yoganandan
,
N.
,
Maiman
,
D. J.
,
Pintar
,
F. A.
,
Ray
,
G.
,
Myklebust
,
J. B.
,
Sances
,
A.
, Jr.
, and
Larson
,
S. J.
,
1988
, “
Microtrauma in the Lumbar Spine: a Cause of Low Back Pain
,”
Neurosurgery
,
23
, pp.
162
168
.
You do not currently have access to this content.