With the aim of studying mechanisms of the remodeling of tendons and ligaments, the effects of stress shielding on the rabbit patellar tendon were studied by performing tensile and stress relaxation tests in the transverse direction. The tangent modulus, tensile strength, and strain at failure of non-treated, control patellar tendons in the transverse direction were 1272 kPa, 370 kPa, and 40.5 percent, respectively, whereas those of the tendons stress-shielded for 1 week were 299 kPa, 108 kPa, and 40.4 percent, respectively. Stress shielding markedly decreased tangent modulus and tensile strength in the transverse direction, and the decreases were larger than those in the longitudinal direction, which were determined in our previous study. For example, tensile strength in the transverse and longitudinal direction decreased to 29 and 50 percent of each control value, respectively, after 1 week stress shielding. In addition, the stress relaxation in the transverse direction of stress-shielded patellar tendons was much larger than that of non-treated, control ones. In contrast to longitudinal tensile tests for the behavior of collagen, transverse tests reflect the contributions of ground substances such as proteoglycans and mechanical interactions between collagen fibers. Ground substances provide lubrication and spacing between fibers, and also confer viscoelastic properties. Therefore, the results obtained from the present study suggest that ground substance matrix, and interfiber and fiber–matrix interactions have important roles in the remodeling response of tendons to stress. [S0148-0731(00)00806-2]

1.
Noyes
,
F. R.
,
1977
, “
Functional Properties of Knee Ligaments and Alterations Induced by Immobilization. A Correlative Biomechanical and Histological Study in Primates
,”
Clin. Orthop.
,
123
, pp.
210
242
.
2.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Sites
,
T. J.
,
Newton
,
P. O.
,
Orlando
,
C. A.
, and
Akeson
,
W. H.
,
1987
, “
The Biomechanical and Morphological Changes in the Medial Collateral Ligament of the Rabbit After Immobilization and Remobilization
,”
J. Bone Joint Surg. Am.
,
69A
, pp.
1200
1211
.
3.
Newton
,
P. O.
,
Woo
,
S. L.-Y.
,
MacKenna
,
D. A.
, and
Akeson
,
W. H.
,
1995
, “
Immobilization of the Knee Joint Alters the Mechanical and Ultrastructural Properties of the Rabbit Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
13
, pp.
191
200
.
4.
Larsen
,
N. P.
,
Forwood
,
M. R.
, and
Parker
,
A. W.
,
1987
, “
Immobilization and Retraining of Cruciate Ligaments in the Rat
,”
Acta Orthop. Scand.
,
58
, pp.
260
264
.
5.
Cabaud
,
H. E.
,
Chatty
,
A.
,
Gildengorin
,
V.
, and
Feltman
,
R. J.
,
1980
, “
Exercise Effects on the Strength of the Rat Anterior Cruciate Ligament
,”
Am. J. Sports Med.
,
8
, pp.
79
86
.
6.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Amiel
,
D.
,
Ritter
,
M. A.
,
Gelberman
,
R. H.
, and
Akeson
,
W. H.
,
1981
, “
The Effects of Exercise on the Biomechanical and Biochemical Properties of Swine Digital Flexor Tendons
,”
ASME J. Biomech. Eng.
,
103
, pp.
51
56
.
7.
Wang, C. W., Weiss, J. A., Albright, J. P., Buckwalter, J. A., and Woo, S. L.-Y., 1989, “The Effects of Long Term Exercise on the Structural and Mechanical Properties of the Canine Medial Collateral Ligament,” 1989 Biomechanics Symposium, ASME AMD-Vol. 98, pp. 69–72.
8.
Rogers
,
G. J.
,
Milthorpe
,
B. K.
,
Schindhelm
,
K.
,
Howlett
,
C. R.
, and
Roe
,
S.
,
1995
, “
Shielding of Augmented Tendon-Tendon Repair
,”
Biomaterials
,
16
, pp.
803
807
.
9.
Atkinson
,
T. S.
,
Atkinson
,
P. J.
,
Mendenhall
,
H. V.
, and
Haut
,
R. C.
,
1998
, “
Patellar Tendon and Infrapatellar Fat Pad Healing After Harvest of an ACL Graft
,”
J. Surg. Res.
,
79
, pp.
25
30
.
10.
Kennedy
,
J. C.
,
Roth
,
J. H.
,
Mendenhall
,
H. V.
, and
Sanford
,
J. B.
,
1980
, “
Intraarticular Replacement in the Anterior Cruciate Ligament-Deficient Knee
,”
Am. J. Sports Med.
,
8
, pp.
1
8
.
11.
Jackson
,
W. D.
,
Grood
,
E. S.
,
Arnoczky
,
S. P.
,
Butler
,
D. L.
, and
Simon
,
T. M.
,
1987
, “
Cruciate Reconstruction Using Freeze Dried Anterior Cruciate Ligament Allograft and a Ligament Augmentation Device (LAD)
,”
Am. J. Sports Med.
,
15
, pp.
528
538
.
12.
McCarthy
,
J. A.
,
Steadman
,
J. R.
,
Dunlap
,
J.
,
Shively
,
R.
, and
Stonebrook
,
S.
,
1990
, “
A Nonparallel Nonisometric Synthetic Graft Augmentation of a Patellar Tendon Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
18
, pp.
43
49
.
13.
Yasuda
,
K.
,
Tsujino
,
J.
,
Tanabe
,
Y.
, and
Kaneda
,
K.
,
1997
, “
Effects of Initial Graft Tension on Clinical Outcome After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
25
, pp.
99
106
.
14.
Yamamoto
,
N.
,
Ohno
,
K.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1993
, “
Effects of Stress Shielding on the Mechanical Properties of Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
115
, pp.
23
28
.
15.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1996
, “
Effects of Restressing on the Mechanical Properties of Stress-Shielded Patellar Tendons in Rabbits
,”
ASME J. Biomech. Eng.
,
118
, pp.
216
220
.
16.
Hayashi
,
K.
,
1996
, “
Biomechanical Studies of the Remodeling of Knee Joint Tendons and Ligaments
,”
J. Biomech.
,
29
, pp.
707
716
.
17.
Hayashi, K., Yamamoto, N., and Yasuda, K., 1996, “Response of Knee Joint Tendons and Ligaments to Mechanical Stress,” Biomechanics—Functional Adaptation and Remodeling, Hayashi, K., Kamiya, A., and Ono, K., eds., Springer-Verlag, Tokyo, pp. 185–212.
18.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Hayashi
,
F.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1999
, “
Biomechanical Studies of the Rabbit Patellar Tendon After Removal of Its One-Fourth or a Half
,”
ASME J. Biomech. Eng.
,
121
, pp.
323
329
.
19.
Atkinson
,
P. J.
,
Oyen-Tiesma
,
M.
,
Zukosky
,
D. K.
,
DeCamp
,
C. E.
,
Mackenzie
,
C. D.
, and
Haut
,
R. C.
,
1999
, “
Patellar Tendon Augmentation After Removal of Its Central Third Limits Joint Tissue Changes
,”
J. Orthop. Res.
,
17
, pp.
28
36
.
20.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
1999
, “
Mechanical Properties of Collagen Fascicles From Stress-Shielded Patellar Tendons in the Rabbit
,”
Clin. Biomech.
,
14
, pp.
418
425
.
21.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
, pp.
757
763
.
22.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
1999
, “
Mechanical Properties of Collagen Fascicles From the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
121
, pp.
124
131
.
23.
Woo
,
S. L.-Y.
,
Newton
,
P. O.
,
MacKenna
,
D. A.
, and
Lyon
,
R. M.
,
1992
, “
A Comparative Evaluation of the Mechanical Properties of the Rabbit Medial Collateral and Anterior Cruciate Ligaments
,”
J. Biomech.
,
25
, pp.
377
386
.
24.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
,
1992
, “
Mechanical Properties of the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
114
, pp.
332
337
.
25.
Harner
,
C. D.
,
Xerogeanes
,
J. W.
,
Livesay
,
G. A.
,
Carlin
,
G. J.
,
Smith
,
B. A.
,
Kusayama
,
T.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L.-Y.
,
1995
, “
The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study
,”
Am. J. Sports Med.
,
23
, pp.
736
745
.
26.
Butler
,
D. L.
,
Guan
,
Y.
,
Kay
,
M. D.
,
Cummings
,
J. F.
,
Feder
,
S. M.
, and
Levy
,
M. S.
,
1992
, “
Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament
,”
J. Biomech.
,
25
, pp.
511
518
.
27.
Race
,
A.
, and
Amis
,
A. A.
,
1994
, “
The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament
,”
J. Biomech.
,
27
, pp.
13
24
.
28.
Frank, C., and Shrive, N. G., 1994, “Ligament,” Biomechanics of the Musculo-Skeletal System, Nigg, B. M., and Herzog, W., eds., Wiley, Chichester, pp. 106–130.
29.
Jones
,
R. S.
,
Nawana
,
N. S.
,
Pearcy
,
M. J.
,
Learmonth
,
D. J. A.
,
Bickerstaff
,
D. R.
,
Costi
,
J. J.
, and
Paterson
,
R. S.
,
1995
, “
Mechanical Properties of the Human Anterior Cruciate Ligament
,”
Clin. Biomech.
,
10
, pp.
339
344
.
30.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Seguchi
,
Y.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
,
1983
, “
Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation
,”
J. Orthop. Res.
,
1
, pp.
22
29
.
31.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
A Mechanism for Rotation Restraints in the Knee Joint
,”
J. Orthop. Res.
,
24
, pp.
676
679
.
32.
Amiel
,
D.
,
Frank
,
C.
,
Harwood
,
F. L.
,
Fronek
,
J.
, and
Akeson
,
W. H.
,
1984
, “
Tendons and Ligaments: A Morphological and Biochemical Comparison
,”
J. Orthop. Res.
,
1
, pp.
257
265
.
33.
Kwan
,
M. K.
,
Lin
,
T. H.-C.
, and
Woo
,
S. L.-Y.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
, pp.
447
452
.
34.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N.-Y.
, and
Woo
,
S. L.-Y.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
, pp.
796
803
.
You do not currently have access to this content.