Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53°C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.

1.
Bonar
 
L. C.
, and
Glimcher
 
M. J.
,
1970
, “
Thermal denaturation of mineralized and demineralized bone collagen
,”
J. Ultrastruct. Res.
, Vol.
32
, pp.
545
551
.
2.
Bowman
 
S. M.
,
Keaveny
 
T. M.
,
Gibson
 
L. J.
,
Hayes
 
W. C.
, and
McMahon
 
T. A.
,
1994
, “
Compressive creep behavior of bovine trabecular bone
,”
J. Biomech.
, Vol.
27
, pp.
301
310
.
3.
Caler
 
W. E.
, and
Carter
 
D. R.
,
1989
, “
Bone creep-fatigue damage accumulation
,”
J. Biomech.
, Vol.
22
, pp.
625
635
.
4.
Carter, D. R., and Caler, W. E., 1983a, “Time-dependent bone fracture with repeated loading,” Trans. 29th ORS, Vol. 8, p. 285.
5.
Carter
 
D. R.
, and
Caler
 
W. E.
,
1983
b, “
Cycle-dependent and time-dependent bone fracture with repeated loading
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
105
, pp.
166
170
.
6.
Carter, D. R., and Caler, W. E., 1984, “An extended model for cortical bone impact, creep, creep-fatigue, and fatigue fracture,” Trans. 30th ORS, Vol. 9, p. 201.
7.
Carter
 
D. R.
, and
Caler
 
W. E.
,
1985
, “
A cumulative damage model for bone fracture
,”
J. Orthop. Res.
, Vol.
3
, pp.
84
90
.
8.
Carter
 
D. R.
, and
Hayes
 
W. C.
,
1976
, “
Compact bone fatigue damage: a microscopic examination
,”
Clin. Orthop. Rel. Res.
, Vol.
127
, pp.
265
274
.
9.
Devas, M. B., 1975, Stress Fractures, Churchill Livingstone, London.
10.
Fondrk
 
M.
,
Bahniuk
 
E.
,
Davy
 
D. T.
, and
Michaels
 
C.
,
1988
, “
Some viscoplastic characteristics of bovine and human cortical bone
,”
J. Biomech.
, Vol.
21
, pp.
623
630
.
11.
Freeman
 
M. A.
,
Todd
 
R. C.
, and
Pirie
 
C. J.
,
1974
, “
The role of fatigue in the pathogenesis of senile femoral neck fractures
,”
J. Bone Jt. Surg.
, Vol.
56B
, pp.
698
702
.
12.
Gibson, L. J., and Ashby, M. F., 1988, Cellular Solids: Structure and Properties, Pergamon Press, New York.
13.
Glimcher
 
M. J.
, and
Katz
 
E. L.
,
1965
, “
The organization of collagen in bone: the role of noncovalent bonds in the relative insolubility of bone collagen
,”
J. Ultrastruct. Res.
, Vol.
12
, pp.
705
729
.
14.
Goldstein, S. A., Hollister, S. J., Kuhn, J. L., and Kikuchi, N., 1990, “The mechanical and remodeling properties of trabecular bone,” in: Biomechanics of Diarthroidal Joints, Vol. II, Mow, V. C., Ratcliffe, A., and Woo, S. L.-Y., eds., Springer-Verlag, New York.
15.
Griffiths
 
W. E. G.
,
Swanson
 
S. A. V.
, and
Freeman
 
M. A. R.
,
1971
, “
Experimental fatigue fracture of the human cadaveric femoral neck
,”
J. Bone Jt. Surg.
, Vol.
53B
, pp.
136
143
.
16.
Guo, X. E., Gibson, L. J., and McMahon, T. A., 1993, “Fatigue of trabecular bone: avoiding end-crushing artifacts,” Trans. 39th ORS, Vol. 18, p. 584.
17.
Guo
 
X. E.
,
Gibson
 
L. J.
,
McMahon
 
T. A.
,
Keaveny
 
T. M.
, and
Hayes
 
W. C.
,
1994
, “
Finite element modeling of damage accumulation in trabecular bone under cyclic loading
,”
J. Biomech.
, Vol.
27
, pp.
145
155
.
18.
Keaveny
 
T. M.
,
Borchers
 
R. E.
,
Gibson
 
L. J.
, and
Hayes
 
W. C.
,
1993
, “
Trabecular bone modulus and strength can depend on specimen geometry
,”
J. Biomech.
, Vol.
26
, pp.
991
1000
.
19.
Keaveny
 
T. M.
,
Guo
 
X. E.
,
Wachtel
 
E. F.
,
McMahon
 
T. A.
, and
Hayes
 
W. C.
,
1994
, “
Trabecular bone exhibits fully linear elastic behavior and yields at low strains
,”
J. Biomech.
, Vol.
27
, pp.
1127
1136
.
20.
Martin
 
R. B.
, and
Burr
 
D. B.
,
1982
, “
A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage
,”
J. Biomech.
, Vol.
15
, pp.
137
139
.
21.
McCubbrey
 
D. A.
,
Cody
 
D. D.
,
Peterson
 
E. L.
,
Kuhn
 
J. L.
,
Flynn
 
M. J.
, and
Goldstein
 
S. A.
,
1995
, “
Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density
,”
J. Biomech.
, Vol.
28
, pp.
891
899
.
22.
Melnis, A. E., and Knets, I. V., 1981, “Age-related changes in the tensile creep properties of human compact bone tissue,” translated from Mekhanika Kompozitnikh Materialov, Vol. 4, pp. 701–707.
23.
Michel
 
M. C.
,
Guo
 
X. E.
,
Gibson
 
L. J.
,
McMahon
 
T. A.
, and
Hayes
 
W. C.
,
1993
, “
Compressive fatigue behavior of bovine trabecular bone
,”
J. Biomech.
, Vol.
26
, pp.
599
607
.
24.
Morris, J. M., and Blickenstaff, L. D., 1967, Fatigue Fracture: a Clinical Study, Charles C. Thomas, Springfield, IL.
25.
Norris
 
R. J.
,
1992
, “
Medical costs of osteoporosis
,”
Bone
, Vol.
13
, pp.
S11–S16
S11–S16
.
26.
Pais, M. J., and Wang, F., 1989, “Stress injuries,” in: Avulsion and Stress Injuries of the Musculoskeletal System, Tehranzadeh, J., Serafini, A. N., and Pais, M. J., eds., Kargen, New York.
27.
Pattin
 
C. A.
,
Caler
 
W. E.
, and
Carter
 
D. R.
,
1996
, “
Cyclic mechanical property degradation during fatigue loading of cortical bone
,”
J. Biomech.
, Vol.
29
, pp.
69
79
.
28.
Riggs
 
B. L.
, and
Melton
 
L. J.
,
1995
, “
The worldwide problem of osteoporosis: Insights afforded by epidemiology
,”
Bone
, Vol.
17
, pp.
505S–511S
505S–511S
.
29.
Rimnac
 
C. M.
,
Petko
 
A. A.
,
Santner
 
T. J.
, and
Wright
 
T. M.
,
1993
, “
The effect of temperature, stress, and microstructure on the creep of compact bovine bone
,”
J. Biomech.
, Vol.
26
, pp.
219
228
.
30.
Zilch
 
H.
,
Rohlmann
 
A.
,
Bergmann
 
G.
, and
Kolbel
 
R.
,
1980
, “
Material properties of femoral cancellous bone in axial loading, Part II: time-dependent properties
,”
Acta Orthop. Traumat. Surg.
, Vol.
97
, pp.
257
262
.
This content is only available via PDF.
You do not currently have access to this content.