Atherosclerotic lesions tend to localize at curvatures and branches of the arterial system, where the local flow is often disturbed and irregular (e.g., flow separation, recirculation, complex flow patterns, and nonuniform shear stress distributions). The effects of such flow conditions on cultured human umbilical vein endothelial cells (HUVECs) were studied in vitro by using a vertical-step flow channel (VSF). Detailed shear stress distributions and flow structures have been computed by using the finite volume method in a general curvilinear coordinate system. HUVECs in the reattachment areas with low shear stresses were generally rounded in shape. In contrast, the cells under higher shear stresses were significantly elongated and aligned with the flow direction, even for those in the area with reversed flow. When HUVECs were subjected to shearing in VSF, their actin stress fibers reorganized in association with the morphological changes. The rate of DNA synthesis in the vicinity of the flow reattachment area was higher than that in the laminar flow area. These in vitro experiments have provided data for the understanding of the in vivo responses of endothelial cells under complex flow environments found in regions of prevalence of atherosclerotic lesions.

1.
Buss, H., “Morphology and fluid-dynamics of endothelial cells at the site of vascular bifurcation,” Fluid Dynamics as Localizing Factor for Atherosclerosis, Shettler, G., Nerem, R. M., and Schmid-Scho¨nbein, H., eds., Springer-Verlag, Heidelberg, 1983, pp. 168–172.
2.
Car
 
R. T.
, and
Kotha
 
S. L.
, “
Separation surfaces for laminar flow in branching tubes—Effects of Reynolds number and geometry
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
,
1995
, pp.
442
447
.
3.
Caro
 
C. G.
,
Fitz-Gerald
 
J. M.
, and
Schroter
 
R. C.
, “
Atheroma and arterial wall shear. Observation, correlation and proposal of a shear-dependent mass transfer mechanism for atherogenesis
,”
Proc. Roy. Soc., London
, Vol.
B 177
,
1971
, pp.
109
159
.
4.
Chien
 
S.
,
Lin
 
S. J.
,
Weinbaum
 
S.
,
Lee
 
M. M.
, and
Jan
 
K. M.
, “
The role of arterial endothelial cell mitosis in macromolecular permeability
,”
Adv. Exper. Med. Biol.
, Vol.
242
,
1988
, pp.
99
109
.
5.
Cornhill
 
J. F.
,
Levesque
 
M. J.
,
Herderick
 
E. E.
,
Nerem
 
R. M.
,
Kilman
 
J. W.
, and
Vasko
 
J. S.
, “
Quantitative study of the rabbit aortic endothelium using vascular casts
,”
Atherosclerosis
, Vol.
35
,
1980
, pp.
321
337
.
6.
Davies
 
P. F.
,
Remuzzi
 
A.
,
Gordon
 
E. J.
,
Dewey
 
C. F.
, and
Gimbrone
 
M. A.
, “
Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro
,”
Proc. Natl. Acad. Sci.
, Vol.
83
,
1986
, pp.
2114
2117
.
7.
Davies
 
P. F.
,
Robotewskyj
 
A.
,
Griem
 
M. L.
,
Dull
 
R. O.
, and
Polacek
 
D. C.
, “
Hemodynamic forces and vascular cell communication in arteries
,”
Archives of Pathology & Medicine
, Vol.
116
,
1992
, pp.
1301
1306
.
8.
Davies
 
P. F.
, and
Tripathi
 
S. C.
, “
Mechanical stress mechanisms and the cell: an endothelial paradigm
,”
Circ. Res.
, Vol.
72
,
1993
, pp.
239
245
.
9.
DePaola
 
N.
,
Gimbrone
 
M. A.
,
Davies
 
P. F.
, and
Dewey
 
C. F.
, “
Vascular endothelium responds to fluid shear stress gradients
,”
Arteriosclerosis and Thrombosis
, Vol.
12
,
1992
, pp.
1254
1257
.
10.
Dewey, C. F., Jr., Gimbrone, M. A., Jr., Bussolari, S. R., White, G. E., and Davies, P. F., “Response of vascular endothelial to unsteady fluid,” Fluid Dynamics as Localizing Factor for Atherosclerosis, Shettler, G., Nerem, R. M., and Schmid-Scho¨nbein. H., eds., Springer-Verlag, Heidelberg, 1983, pp. 182–187.
11.
Dewey
 
C. F.
,
Bussolari
 
S. R.
,
Gimbrone
 
M. A.
, and
Davies
 
P. F.
, “
The dynamic response of vascular endothelial cells to fluid shear stress
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
,
1981
, pp.
177
185
.
12.
Eskin
 
S. G.
,
Ives
 
C. L.
,
McIntire
 
L. V.
, and
Navarro
 
L. T.
Response of cultured endothelial cells to steady flow
,”
Microvasc. Res.
, Vol.
28
,
1984
, pp.
87
94
.
13.
Franke
 
R. P.
,
Grafe
 
M.
,
Schnittler
 
H.
,
Seiffge
 
D.
,
Mittermayer
 
C.
, and
Drenckhahn
 
D.
, “
Induction of human vascular endothelial stress fibers by fluid shear stress
,”
Nature
, Vol.
307
,
1984
, pp.
648
649
.
14.
Geulieb
 
A. I.
,
Spector
 
W.
,
Wong
 
M. K. K.
, and
Lacey
 
C.
, “
In vitro reendothelialization: Microfilament bundle reorganization in migrating porcine endothelial cells
,”
Arteriosclerosis
, Vol.
4
,
1984
, pp.
91
96
.
15.
Gimbrone, M. A., Jr., “Culture of vascular endothelium,” Progress in Hemostasis and Thrombosis, Vol. III, Spaect, T. H., ed., Grune and Stratton, 1976, pp. 1–28.
16.
Gimbrone, M. A., Jr., Kume, N., and Cybulsky, M. I., “Vascular endothelial dysfunction and the pathogenesis of atherosclerosis,” Atherosclerosis Review, Weber, P. C., and Leaf, A., eds., Raven Press, Ltd., New York, 1993, pp. 1–9.
17.
Helmlinger
 
G.
,
Geiger
 
R. V.
,
Schreck
 
S.
, and
Nerem
 
R. M.
, “
Effects of pulsatile flow on cultured vascular endothelial cell morphology
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
,
1991
, pp.
123
131
.
18.
Kim
 
D. W.
,
Gotlieb
 
A. I.
, and
Langille
 
B. L.
, “
In vivo modulation of endothelial F-action microfilaments by experimental alterations in shear stress
,”
Arteriosclerosis
, Vol.
9
,
1989
, pp.
439
445
.
19.
Kim
 
D. W.
,
Langille
 
B. L.
,
Wong
 
M. K. K.
, and
Gotlieb
 
A. I.
, “
Patterns of endothelial microfilament distribution in the rabbit aorta in situ
,”
Cir. Res.
, Vol.
64
,
1989
, pp.
21
31
.
20.
Ku
 
D. N.
,
Giddens
 
D. P.
,
Zarins
 
C. K.
, and
Glagov
 
S.
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation
,”
Arteriosclerosis
, Vol.
5
,
1985
, pp.
293
302
.
21.
Langille
 
B. L.
, and
Adamson
 
S. L.
, “
Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice
,”
Cir. Res.
, Vol.
48
,
1981
, pp.
481
488
.
22.
Langille
 
B. L.
,
Reidy
 
M. A.
, and
Kine
 
R. L.
, “
Injury and repair of endothelium at sites of flow disturbances near abdominal aortic coarctations in rabbits
,”
Arteriosclerosis
, Vol.
6
,
1986
, pp.
146
154
.
23.
Lee
 
D.
, and
Chiu
 
J. J.
, “
Covariant velocity based calculation procedure with non-staggered grids for computation of pulsatile flows
,”
Numerical Heat Transfer
, Vol.
21
, Part B,
1992
, pp.
269
286
.
24.
Lee
 
D.
, and
Chiu
 
J. J.
, “
Computation of physiological bifurcation flow using a patched grid
,”
Comput. & Fluids
, Vol.
21
,
1992
, pp.
519
535
.
25.
Lee
 
D.
, and
Chiu
 
J. J.
, “
A numerical simulation of intimal thickening under shear in arteries
,”
Biorheology
, Vol.
29
,
1992
, pp.
337
351
.
26.
Levesque
 
M. J.
, and
Nerem
 
R. M.
, “
The elongation and orientation of cultured endothelial cells in response to shear stress
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
,
1985
, pp.
341
347
.
27.
Lin
 
S.-J.
,
Jan
 
K.-M.
,
Schuessler
 
G.
,
Weinbaum
 
S.
, and
Chien
 
S.
, “
Enhanced macromolecular permeability of aortic endothelial cells in association with mitosis
,”
Arteriosclerosis
, Vol.
73
,
1988
, pp.
223
232
.
28.
Nerem
 
R. M.
, “
Vascular fluid mechanics, the arterial wall, and atherosclerosis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
,
1992
, pp.
274
282
.
29.
Nerem
 
R. M.
,
Harrison
 
D. G.
,
Taylor
 
W. R.
, and
Alexander
 
R. W.
Hemodynamics and vascular endothelial biology
,”
J. Cardiovascular Pharmacology
, Vol.
21
,
1993
, pp.
6
10
.
30.
Nerem
 
R. M.
,
Levesque
 
M. J.
, and
Cornhill
 
J. F.
, “
Vascular endothelial morphology as an indicator of blood flow
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
,
1981
, pp.
172
176
.
31.
Nerem, R. M., and Levesque, M. J., “Fluid mechanics in atherosclerosis,” Handbook of Bioengineering, Skalak, R., and Chien, S., eds., McGraw-Hill, New York, 1987, pp. 21.1–21.22.
32.
Nollert
 
M. N.
,
Diamond
 
S. L.
, and
McIntire
 
L. V.
, “
Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism
,”
Biotechnology and Bioengineering
, Vol.
38
,
1991
, pp.
588
602
.
33.
Olesen
 
S. P.
,
Clapham
 
D. E.
, and
Davies
 
P. F.
, “
Hemodynamic shear stress activates a K current in vascular endothelial cells
,”
Nature
, Vol.
331
,
1988
, pp.
168
170
.
34.
Ookawa
 
K.
,
Sato
 
M.
, and
Ohshima
 
N.
, “
Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
25
,
1992
, pp.
1321
1328
.
35.
Pedley, T. J., The Fluid Mechanics of Large Blood Vessels, Cambridge U. Press, 1980.
36.
Remuzzi
 
A.
,
Dewey
 
C. F.
,
Davies
 
P. F.
, and
Gimbrone
 
M. A.
Orientation of endothelial cells in shear fields in vitro
,”
Biorheology
, Vol.
21
,
1984
, pp.
617
630
.
37.
Ross
 
R.
, “
The pathogenesis of atherosclerosis: a perspective for the 1990s
,”
Nature
, Vol.
362
,
1993
, pp.
801
809
.
38.
Schutte
 
B.
,
Reynders
 
M. M. J.
,
van Assche
 
C. L. M. V. J.
,
Hupperets
 
P. S. G. J.
,
Bosman
 
F. T.
, and
Blijham
 
G. H.
, “
An improved method for the immuno-cytochemical detection of bromodeoxyuridine labeled nuclei using flow cytometry
,”
Cytometry
, Vol.
8
,
1987
, pp.
372
376
.
39.
Shyy
 
Y. J.
,
Hsieh
 
H. J.
,
Usami
 
S.
, and
Chien
 
S.
, “
Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium
,”
Proc. Nat. Acad. of Sci. U.S.A.
, Vol.
91
,
1994
, pp.
4678
4682
.
40.
Skalak
 
R.
,
Ozkaya
 
N.
, and
Skalak
 
T. C.
, “
Biofluid mechanics
,”
Ann. Rev. Fluid Mech.
, Vol.
21
,
1989
, pp.
167
204
.
41.
Truskey
 
G. A.
,
Barker
 
K. M.
,
Rober
 
K. M.
,
Oliver
 
L. A.
, and
Combs
 
M. P.
, “
Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
,
1995
, pp.
203
210
.
42.
Uematsu
 
M.
,
Kitabatake
 
A.
,
Tanouchi
 
J.
,
Doi
 
Y.
,
Masuyama
 
T.
,
Fujii
 
K.
,
Yoshida
 
H.
,
Ito
 
K.
,
Ishihara
 
M.
,
Hori
 
M.
,
Inoue
 
X. X.
, and
Kamada
 
T.
, “
Reduction of endothelial microfilament bundles in the low-shear region of the canine aorta: association with intimal plaque formation in hypercholesterolemia
,”
Arteriosclerosis and Thrombosis
, Vol.
11
,
1991
, pp.
107
115
.
43.
Usami
 
S.
,
Chen
 
H. H.
,
Zhao
 
Y.
,
Chien
 
S.
, and
Skalak
 
R.
, “
Design and construction of a linear shear stress flow chamber
,”
Annals of Biomed. Eng.
, Vol.
21
,
1993
, pp.
1
7
.
44.
Wechezak
 
A. R.
,
Wight
 
T. N.
,
Viggers
 
R. F.
, and
Sauvage
 
L. R.
, “
Endothelial adherence under shear stress is dependent upon microfilament reorganization
,”
J. Cell Physiol.
, Vol.
139
,
1989
, pp.
136
146
.
45.
Weinbaum
 
S.
,
Tsagai
 
G.
,
Ganatos
 
P.
,
Pfeffer
 
S.
, and
Chien
 
S.
, “
Effects of cell turnover and leaky junctions on arterial macromolecular transport
,”
Am. J. Physiol.
, Vol.
248
,
1985
, pp.
945
960
.
46.
Wysolmerski
 
R.
, and
Lagunoff
 
D.
, “
The effect of ethchlorvynol on cultured endothelial cells: A model for the study of the mechanism of increased vascular permeability
,”
Am. J. Pathol.
, Vol.
119
,
1985
, pp.
505
512
.
This content is only available via PDF.
You do not currently have access to this content.