0
Review Article

Thermal Management and Characterization of High-Power Wide-Bandgap Semiconductor Electronic and Photonic Devices in Automotive Applications

[+] Author and Article Information
Seung Kyu Oh

Department of Mechanical Engineering,
Texas Center for Superconductivity
at University of Houston, and
Advanced Manufacturing Institute,
University of Houston,
4726 Calhoun Rd., Rm N207,
Houston, TX 77204-4006
e-mail: soh5@centeral.uh.edu

James Spencer Lundh

Department of Mechanical and
Nuclear Engineering,
The Pennsylvania State University,
306 Reber Building,
University Park, PA 16802
e-mail: jvl6065@psu.edu

Shahab Shervin

Department of Mechanical Engineering and
Advanced Manufacturing Institute,
University of Houston,
4726 Calhoun Rd., Rm N207,
Houston, TX 77204-4006
e-mail: sshervin@central.uh.edu

Bikramjit Chatterjee

Department of Mechanical and
Nuclear Engineering,
The Pennsylvania State University,
306 Reber Building,
University Park, PA 16802
e-mail: bpc5244@psu.edu

Dong Kyu Lee

Department of Printed Electronics Engineering,
Sunchon National University,
Suncheon-si 57922, Jeollanam-do, South Korea
e-mail: donggyu@sunchon.ac.kr

Sukwon Choi

Department of Mechanical and
Nuclear Engineering,
The Pennsylvania State University,
306 Reber Building,
University Park, PA 16802
e-mail: sukwon.choi@psu.edu

Joon Seop Kwak

Department of Printed Electronics Engineering,
Sunchon National University,
Suncheon-si 57922, Jeollanam-do, South Korea
e-mail: jskwak@sunchon.ac.kr

Jae-Hyun Ryou

Department of Mechanical Engineering,
Materials Science and Engineering Program,
Texas Center for Superconductivity
at University of Houston, and
Advanced Manufacturing Institute,
University of Houston,
4726 Calhoun Rd., Rm N207,
Houston, TX 77204-4006
e-mail: jryou@uh.edu

1The authors contributed equally to the paper.

2Corresponding authors.

Contributed by the Electronic and Photonic Packaging Division of ASME for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received March 21, 2018; final manuscript received October 12, 2018; published online February 25, 2019. Assoc. Editor: Sreekant Narumanchi.

J. Electron. Packag 141(2), 020801 (Feb 25, 2019) (17 pages) Paper No: EP-18-1026; doi: 10.1115/1.4041813 History: Received March 21, 2018; Revised October 12, 2018

GaN-based high-power wide-bandgap semiconductor electronics and photonics have been considered as promising candidates to replace conventional devices for automotive applications due to high energy conversion efficiency, ruggedness, and superior transient performance. However, performance and reliability are detrimentally impacted by significant heat generation in the device active area. Therefore, thermal management plays a critical role in the development of GaN-based high-power electronic and photonic devices. This paper presents a comprehensive review of the thermal management strategies for GaN-based lateral power/RF transistors and light-emitting diodes (LEDs) reported by researchers in both industry and academia. The review is divided into three parts: (1) a survey of thermal metrology techniques, including infrared thermography, Raman thermometry, and thermoreflectance thermal imaging, that have been applied to study GaN electronics and photonics; (2) practical thermal management solutions for GaN power electronics; and (3) packaging techniques and cooling systems for GaN LEDs used in automotive lighting applications.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Boutros, K. S. , Chu, R. , and Hughes, B. , 2012, “ GaN Power Electronics for Automotive Application,” IEEE Energytech, Cleveland, OH, May 29–31, pp. 1–4.
Kachi, T. , 2014, “ Recent Progress of GaN Power Devices for Automotive Applications,” Jpn. J. Appl. Phys., 53(10), p. 100210. [CrossRef]
Kachi, T. , Kikuta, D. , and Uesugi, T. , 2012, “ GaN Power Device and Reliability for Automotive Applications,” IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, Apr. 15–19, pp. 3D. 1.1–3D. 1.4.
Kang, B. , Yong, B. , and Park, K. , 2010, “ Performance Evaluations of LED Headlamps,” Int. J. Automot. Technol., 11(5), pp. 737–742. [CrossRef]
Ikeda, N. , Niiyama, Y. , Kambayashi, H. , Sato, Y. , Nomura, T. , Kato, S. , and Yoshida, S. , 2010, “ GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE, 98(7), pp. 1151–1161. [CrossRef]
Oh, S. K. , Jang, T. , Jo, Y. J. , Ko, H.-Y. , and Kwak, J. S. , 2016, “ Improved Package Reliability of AlGaN/GaN HFETs on 150 mm Si Substrates by SiN x/Polyimide Dual Passivation Layers,” Surf. Coat. Technol., 307, pp. 1124–1128. [CrossRef]
Ikeda, N. , Kato, K. , Kondoh, K. , Kambayashi, H. , Li, J. , and Yoshida, S. , 2007, “ Over 55 A, 800 V High Power AlGaN/GaN HFETs for Power Switching Application,” Phys. Status Solidi (a), 204(6), pp. 2028–2031. [CrossRef]
Kambayashi, H. , Satoh, Y. , Ootomo, S. , Kokawa, T. , Nomura, T. , Kato, S. , and Chow, T.-S. P. , 2010, “ Over 100A Operation Normally-Off AlGaN/GaN Hybrid MOS-HFET on Si Substrate With High-Breakdown Voltage,” Solid-State Electron., 54(6), pp. 660–664. [CrossRef]
Pohlmann, W. , Vieregge, T. , and Rode, M. , 2007, “ High Performance LED Lamps for the Automobile: Needs and Opportunities,” Proc. SPIE, 6797, p. 67970D.
Donahoe, D. N. , 2009, “ Thermal Aspects of LED Automotive Headlights,” Vehicle Power and Propulsion Conference (VPPC'09), Dearborn, MI, Sept. 7–10, pp. 1193–1199.
Vollmer, M. , and Möllmann, K.-P. , 2010, Infrared Thermal Imaging: Fundamentals, Research and Applications, Wiley-VCH Verlag, Weinheim, Germany.
Hopper, R. , 2010, “ Accurate Temperature Measurements on Semiconductor Devices,” Ph.D. thesis, De Montfort University, Leicester, UK.
Meola, C. , and Carlomagno, G. M. , 2004, “ Recent Advances in the Use of Infrared Thermography,” Meas. Sci. Technol., 15(9), p. R27. [CrossRef]
Webb, P. , 1991, “ Thermal Imaging of Electronic Devices With Low Surface Emissivity,” IEE Proc. G (Circuits, Devices Syst.), 138(3), pp. 390–400. [CrossRef]
Oxley, C. , Hopper, R. , Hill, G. , and Evans, G. , 2010, “ Improved Infrared (IR) Microscope Measurements and Theory for the Micro-Electronics Industry,” Solid-State Electron., 54(1), pp. 63–66. [CrossRef]
Hopper, R. H. , Oxley, C. H. , Pomeroy, J. W. , and Kuball, M. , 2008, “ Micro-Raman/Infrared Temperature Monitoring of Gunn Diodes,” IEEE Trans. Electron Devices, 55(4), pp. 1090–1093. [CrossRef]
Choi, S. , Peake, G. M. , Keeler, G. A. , Geib, K. M. , Briggs, R. D. , Beechem, T. E. , Shaffer, R. A. , Clevenger, J. , Patrizi, G. A. , and Klem, J. F. , 2016, “ Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs,” IEEE Trans. Compon., Packag. Manuf. Technol., 6(5), pp. 740–748. [CrossRef]
Axell, R. G. , Hopper, R. H. , Jarritt, P. H. , and Oxley, C. H. , 2011, “ A Novel Method for More Accurately Mapping the Surface Temperature of Ultrasonic Transducers,” Ultrasound Med. Biol., 37(10), pp. 1659–1666. [CrossRef] [PubMed]
Jimenez, J. , and Tomm, J. W. , 2016, Spectroscopic Analysis of Optoelectronic Semiconductors, Springer, Cham, Switzerland.
Beechem, III , T. E. , 2008, “ Metrology of GaN Electronics Using Micro-Raman Spectroscopy,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA. https://smartech.gatech.edu/bitstream/handle/1853/26544/beechem_thomas_e_200812_phd.pdf?sequence=1&isAllowed=y
Ferraro, J. R. , 2003, Introductory Raman Spectroscopy, Academic Press, San Diego, CA.
Choi, S. , 2013, “ Stress Metrology and Thermometry of AlGaN/GaN HEMTs Using Optical Methods,” Georgia Institute of Technology, Atlanta, GA.
Beechem, T. , Graham, S. , Kearney, S. P. , Phinney, L. M. , and Serrano, J. R. , 2007, “ Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices Using micro-Raman Spectroscopy,” Rev. Sci. Instrum., 78(6), p. 061301. [CrossRef] [PubMed]
Beechem, T. , Christensen, A. , Graham, S. , and Green, D. , 2008, “ Micro-Raman Thermometry in the Presence of Complex Stresses in GaN Devices,” J. Appl. Phys., 103(12), p. 124501. [CrossRef]
Choi, S. , Heller, E. R. , Dorsey, D. , Vetury, R. , and Graham, S. , 2013, “ Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features,” IEEE Trans. Electron Devices, 60(6), pp. 1898–1904. [CrossRef]
Kuball, M. , Hayes, J. , Uren, M. , Martin, I. , Birbeck, J. , Balmer, R. , and Hughes, B. , 2002, “ Measurement of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy,” IEEE Electron Device Lett., 23(1), pp. 7–9. [CrossRef]
Kuball, M. , and Pomeroy, J. W. , 2016, “ A Review of Raman Thermography for Electronic and Opto-Electronic Device Measurement With Submicron Spatial and Nanosecond Temporal Resolution,” IEEE Trans. Device Mater. Reliab., 16(4), pp. 667–684. [CrossRef]
Kuball, M. , 2001, “ Raman Spectroscopy of GaN, AlGaN and AlN for Process and Growth Monitoring/Control,” Surf. Interface Anal., 31(10), pp. 987–999. [CrossRef]
Serrano, J. R. , and Kearney, S. P. , 2008, “ Time-Resolved micro-Raman Thermometry for Microsystems in Motion,” ASME J. Heat Transfer, 130(12), p. 122401. [CrossRef]
Beechem, T. , Christensen, A. , Green, D. , and Graham, S. , 2009, “ Assessment of Stress Contributions in GaN High Electron Mobility Transistors of Differing Substrates Using Raman Spectroscopy,” J. Appl. Phys., 106(11), p. 114509. [CrossRef]
Batten, T. , Pomeroy, J. , Uren, M. , Martin, T. , and Kuball, M. , 2009, “ Simultaneous Measurement of Temperature and Thermal Stress in AlGaN/GaN High Electron Mobility Transistors Using Raman Scattering Spectroscopy,” J. Appl. Phys., 106(9), p. 094509. [CrossRef]
Choi, S. , Heller, E. , Dorsey, D. , Vetury, R. , and Graham, S. , 2013, “ Analysis of the Residual Stress Distribution in AlGaN/GaN High Electron Mobility Transistors,” J. Appl. Phys., 113(9), p. 093510. [CrossRef]
Bagnall, K. R. , Dreyer, C. E. , Vanderbilt, D. , and Wang, E. N. , 2016, “ Electric Field Dependence of Optical Phonon Frequencies in Wurtzite GaN Observed in GaN High Electron Mobility Transistors,” J. Appl. Phys., 120(15), p. 155104. [CrossRef]
Bagnall, K. R. , and Wang, E. N. , 2016, “ Contributed Review: Experimental Characterization of Inverse Piezoelectric Strain in GaN HEMTs Via micro-Raman Spectroscopy,” Rev. Sci. Instrum., 87(6), p. 061501. [CrossRef] [PubMed]
Kuball, M. , Riedel, G. , Pomeroy, J. , Sarua, A. , Uren, M. , Martin, T. , Hilton, K. , Maclean, J. , and Wallis, D. , 2007, “ Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy,” IEEE Electron Device Lett., 28(2), pp. 86–89. [CrossRef]
Lancry, O. , Pichonat, E. , Réhault, J. , Moreau, M. , Aubry, R. , and Gaquière, C. , 2010, “ Development of Time-Resolved UV Micro-Raman Spectroscopy to Measure Temperature in AlGaN/GaN HEMTs,” Solid-State Electron., 54(11), pp. 1434–1437. [CrossRef]
Bagnall, K. R. , Saadat, O. I. , Joglekar, S. , Palacios, T. , and Wang, E. N. , 2017, “ Experimental Characterization of the Thermal Time Constants of GaN HEMTs Via Micro-Raman Thermometry,” IEEE Trans. Electron Devices, 64(5), pp. 2121–2128. [CrossRef]
Hapke, B. , 2012, Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge, UK.
Pavlidis, G. , Kendig, E. , Heller, E. R. , and Graham, S. , 2018, “ Transient Thermal Characterization of AlGaN/GaN HEMTs Under Pulsed Biasing,” IEEE Trans. Electron Devices, 65(5), pp. 1753–1758.
Christofferson, J. , Vashaee, D. , Shakouri, A. , Melese, P. , Fan, X. , Zeng, G. , Labounty, C. , Bowers, J. E. , and Croke, E. T. , 2001, “ Thermoreflectance Imaging of Superlattice Micro Refrigerators,” Seventeenth Annual IEEE Symposium on Semiconductor Thermal Measurement and Management, San Jose, CA, Mar. 22, pp. 58–62.
Ju, S. , Kading, O. , Leung, Y. , Wong, S. , and Goodson, K. , 1997, “ Short-Timescale Thermal Mapping of Semiconductor Devices,” IEEE Electron Device Lett., 18(5), pp. 169–171. [CrossRef]
Grauby, S. , Salhi, A. , Rampnoux, J.-M. , Michel, H. , Claeys, W. , and Dilhaire, S. , 2007, “ Laser Scanning Thermoreflectance Imaging System Using Galvanometric Mirrors for Temperature Measurements of Microelectronic Devices,” Rev. Sci. Instrum., 78(7), p. 074902. [CrossRef] [PubMed]
Christofferson, J. , and Shakouri, A. , 2005, “ Thermoreflectance Based Thermal Microscope,” Rev. Sci. Instrum., 76(2), p. 024903. [CrossRef]
Grauby, S. , Forget, B. , Holé, S. , and Fournier, D. , 1999, “ High Resolution Photothermal Imaging of High Frequency Phenomena Using a Visible Charge Coupled Device Camera Associated With a Multichannel Lock-in Scheme,” Rev. Sci. Instrum., 70(9), pp. 3603–3608. [CrossRef]
Tessier, G. , Holé, S. , and Fournier, D. , 2001, “ Quantitative Thermal Imaging by Synchronous Thermoreflectance With Optimized Illumination Wavelengths,” Appl. Phys. Lett., 78(16), pp. 2267–2269. [CrossRef]
Luerssen, D. , Hudgings, J. A. , Mayer, P. M. , and Ram, R. J. , 2005, “ Nanoscale Thermoreflectance With 10mK Temperature Resolution Using Stochastic Resonance,” IEEE Twenty First Annual Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, Mar. 15–17, pp. 253–258.
Farzaneh, M. , Maize, K. , Lüerßen, D. , Summers, J. , Mayer, P. , Raad, P. , Pipe, K. , Shakouri, A. , Ram, R. , and Hudgings, J. A. , 2009, “ CCD-Based Thermoreflectance Microscopy: Principles and Applications,” J. Phys. D: Appl. Phys., 42(14), p. 143001. [CrossRef]
Christofferson, J. , Maize, K. , Ezzahri, Y. , Shabani, J. , Wang, X. , and Shakouri, A. , 2008, “ Microscale and Nanoscale Thermal Characterization Techniques,” ASME J. Electron. Packag., 130(4), p. 041101. [CrossRef]
Maize, K. , Heller, E. , Dorsey, D. , and Shakouri, A. , 2012, “ Thermoreflectance CCD Imaging of Self Heating in AlGaN/GaN High Electron Mobility Power Transistors at High Drain Voltage,” 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, Mar. 18–22, pp. 173–181.
Maize, K. , Pavlidis, G. , Heller, E. , Yates, L. , Kendig, D. , Graham, S. , and Shakouri, A. , 2014, “ High Resolution Thermal Characterization and Simulation of Power AlGaN/GaN HEMTs Using Micro-Raman Thermography and 800 Picosecond Transient Thermoreflectance Imaging,” Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, Oct. 19–22, pp. 1–8.
Matei, C. , Aaen, P. , and Kending, D. , 2017, “ High-Resolution Thermoreflectance Imaging of GaN Power Microwave Transistors,” ARMMS RF & Microwave Society, Wyboston Lakes, Wyboston, UK, Nov. 13–17. http://epubs.surrey.ac.uk/845637/1/High%20Resolution%20thermoreflectace%20measurements%20of%20GaN%20transistor.pdf
Vermeersch, B. , Christofferson, J. , Maize, K. , Shakouri, A. , and De Mey, G. , 2010, “ Time and Frequency Domain CCD-Based Thermoreflectance Techniques for High-Resolution Transient Thermal Imaging,” 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), Santa Clara, CA, Feb. 21–25, pp. 228–234.
Maize, K. , and Shakouri, A. , 2008, “ Transient Thermal Imaging Using Thermoreflectance,” 24th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, Mar. 16–20, pp. 55–58.
Kendig, D. , Tay, A. , and Shakouri, A. , 2016, “ Thermal Analysis of Advanced Microelectronic Devices Using Thermoreflectance Thermography,” 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Budapest, Hungary, Sept. 21–23, pp. 115–120.
Oh, S. K. , Cho, M. U. , Dallas, J. , Jang, T. , Lee, D. G. , Pouladi, S. , Chen, J. , Wang, W. , Shervin, S. , and Kim, H. , 2017, “ High-Power Flexible AlGaN/GaN Heterostructure Field-Effect Transistors With Suppression of Negative Differential Conductance,” Appl. Phys. Lett., 111(13), p. 133502. [CrossRef]
Park, J. , Shin, M. W. , and Lee, C. C. , 2004, “ Thermal Modeling and Measurement of AlGaN-GaN HFETs Built on Sapphire and SiC Substrates,” IEEE Trans. Electron Devices, 51(11), pp. 1753–1759. [CrossRef]
Asnin, V. , Pollak, F. H. , Ramer, J. , Schurman, M. , and Ferguson, I. , 1999, “ High Spatial Resolution Thermal Conductivity of Lateral Epitaxial Overgrown GaN/Sapphire (0001) Using a Scanning Thermal Microscope,” Appl. Phys. Lett., 75(9), pp. 1240–1242. [CrossRef]
Kuzmik, J. , Javorka, R. , Alam, A. , Marso, M. , Heuken, M. , and Kordos, P. , 2002, “ Determination of Channel Temperature in AlGaN/GaN HEMTs Grown on Sapphire and Silicon Substrates Using DC Characterization Method,” IEEE Trans. Electron Devices, 49(8), pp. 1496–1498. [CrossRef]
Wei, R. , Song, S. , Yang, K. , Cui, Y. , Peng, Y. , Chen, X. , Hu, X. , and Xu, X. , 2013, “ Thermal Conductivity of 4H-SiC Single Crystals,” J. Appl. Phys., 113(5), p. 053503. [CrossRef]
Gaska, R. , Osinsky, A. , Yang, J. , and Shur, M. S. , 1998, “ Self-Heating in High-Power AlGaN-GaN HFETs,” IEEE Electron Device Lett., 19(3), pp. 89–91. [CrossRef]
Chumbes, E. M. , Schremer, A. , Smart, J. A. , Wang, Y. , MacDonald, N. C. , Hogue, D. , Komiak, J. J. , Lichwalla, S. J. , Leoni, R. E. , and Shealy, J. R. , 2001, “ AlGaN/GaN High Electron Mobility Transistors on Si (111) Substrates,” IEEE Trans. Electron Devices, 48(3), pp. 420–426. [CrossRef]
Tan, W. , Uren, M. , Fry, P. , Houston, P. , Balmer, R. , and Martin, T. , 2006, “ High Temperature Performance of AlGaN/GaN HEMTs on Si Substrates,” Solid-State Electron., 50(3), pp. 511–513. [CrossRef]
Kuzmík, J. , Bychikhin, S. , Neuburger, M. , Dadgar, A. , Krost, A. , Kohn, E. , and Pogany, D. , 2005, “ Transient Thermal Characterization of AlGaN/GaN HEMTs Grown on Silicon,” IEEE Trans. Electron Devices, 52(8), pp. 1698–1705. [CrossRef]
Sarua, A. , Ji, H. , Hilton, K. , Wallis, D. , Uren, M. J. , Martin, T. , and Kuball, M. , 2007, “ Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices,” IEEE Trans. Electron Devices, 54(12), pp. 3152–3158. [CrossRef]
Manoi, A. , Pomeroy, J. W. , Killat, N. , and Kuball, M. , 2010, “ Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure,” IEEE Electron Device Lett., 31(12), pp. 1395–1397. [CrossRef]
Riedel, G. J. , Pomeroy, J. W. , Hilton, K. P. , Maclean, J. O. , Wallis, D. J. , Uren, M. J. , Martin, T. , Forsberg, U. , Lundskog, A. , and Kakanakova-Georgieva, A. , 2009, “ Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers,” IEEE Electron Device Lett., 30(2), pp. 103–106. [CrossRef]
Chu, K. , Chao, P. , Pizzella, M. , Actis, R. , Meharry, D. , Nichols, K. , Vaudo, R. , Xu, X. , Flynn, J. , and Dion, J. , 2004, “ 9.4-W/mm Power Density AlGaN-GaN HEMTs on Free-Standing GaN Substrates,” IEEE Electron Device Lett., 25(9), pp. 596–598. [CrossRef]
Hirama, K. , Taniyasu, Y. , and Kasu, M. , 2011, “ AlGaN/GaN High-Electron Mobility Transistors With Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy,” Appl. Phys. Lett., 98(16), p. 162112. [CrossRef]
Mikulics, M. , Kočan, M. , Rizzi, A. , Javorka, P. , Sofer, Z. , Stejskal, J. , Marso, M. , Kordoš, P. , and Lüth, H. , 2005, “ Growth and Properties of GaN and AlN Layers on Silver Substrates,” Appl. Phys. Lett., 87(21), p. 212109. [CrossRef]
Hiroki, M. , Kumakura, K. , Kobayashi, Y. , Akasaka, T. , Makimoto, T. , and Yamamoto, H. , 2014, “ Suppression of Self-Heating Effect in AlGaN/GaN High Electron Mobility Transistors by Substrate-Transfer Technology Using h-BN,” Appl. Phys. Lett., 105(19), p. 193509. [CrossRef]
Chabak, K. D. , Gillespie, J. K. , Miller, V. , Crespo, A. , Roussos, J. , Trejo, M. , Walker, D. E. , Via, G. D. , Jessen, G. H. , and Wasserbauer, J. , 2010, “ Full-Wafer Characterization of AlGaN/GaN HEMTs on Free-Standing CVD Diamond Substrates,” IEEE Electron Device Lett., 31(2), pp. 99–101. [CrossRef]
Hwang, Y.-H. , Kang, T.-S. , Ren, F. , and Pearton, S. J. , 2014, “ Novel Approach to Improve Heat Dissipation of AlGaN/GaN High Electron Mobility Transistors With a Cu Filled Via Under Device Active Area,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 32(6), p. 061202.
Yan, Z. , Liu, G. , Khan, J. M. , and Balandin, A. A. , 2012, “ Graphene-Graphite Quilts for Thermal Management of High-Power GaN Transistors,” preprint arXiv: 1203.6099. https://arxiv.org/abs/1203.6099
Zhou, Y. , Ramaneti, R. , Anaya, J. , Korneychuk, S. , Derluyn, J. , Sun, H. , Pomeroy, J. , Verbeeck, J. , Haenen, K. , and Kuball, M. , 2017, “ Thermal Characterization of Polycrystalline Diamond Thin Film Heat Spreaders Grown on GaN HEMTs,” Appl. Phys. Lett., 111(4), p. 041901. [CrossRef]
Lin, Z. , Liu, C. , and Chai, Y. , 2016, “ High Thermally Conductive and Electrically Insulating 2D Boron Nitride Nanosheet for Efficient Heat Dissipation of High-Power Transistors,” 2D Mater., 3(4), p. 041009. [CrossRef]
Oh, S. K. , Jang, T. , Jo, Y. J. , Ko, H.-Y. , and Kwak, J. S. , 2016, “ Bonding Pad Over Active Structure for Chip Shrinkage of High-Power AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, 63(2), pp. 620–624. [CrossRef]
Oh, S. K. , Jang, T. , Pouladi, S. , Jo, Y. J. , Ko, H.-Y. , Ryou, J.-H. , and Kwak, J. S. , 2016, “ Output Power Enhancement in AlGaN/GaN Heterostructure Field-Effect Transistors With Multilevel Metallization,” Appl. Phys. Express, 10(1), p. 016502. [CrossRef]
Cheng, S. , Chou, P.-C. , Chieng, W.-H. , and Chang, E. , 2013, “ Enhanced Lateral Heat Dissipation Packaging Structure for GaN HEMTs on Si Substrate,” Appl. Therm. Eng., 51(1–2), pp. 20–24. [CrossRef]
Loutfy, K. , and Hirotsuru, H. , 2011, “ Advanced Diamond Based Metal Matrix Composites for Thermal Management of RF Devices,” IEEE 12th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater Beach, FL, Apr. 18–19, pp. 1–5.
Davidson, H. L. , Colella, N. J. , Kerns, J. A. , and Makowiecki, D. , 1995, “ Copper-Diamond Composite Substrates for Electronic Components,” 45th Electronic Components and Technology, Las Vegas, NV, May 21–24, pp. 538–541.
Faqir, M. , Batten, T. , Mrotzek, T. , Knippscheer, S. , Massiot, M. , Buchta, M. , Blanck, H. , Rochette, S. , Vendier, O. , and Kuball, M. , 2012, “ Improved Thermal Management for GaN Power Electronics: Silver Diamond Composite Packages,” Microelectron. Reliab., 52(12), pp. 3022–3025. [CrossRef]
Das, J. , Oprins, H. , Ji, H. , Sarua, A. , Ruythooren, W. , Derluyn, J. , Kuball, M. , Germain, M. , and Borghs, G. , 2006, “ Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Trans. Electron Devices, 53(11), pp. 2696–2702. [CrossRef]
Sun, J. , Fatima, H. , Koudymov, A. , Chitnis, A. , Hu, X. , Wang, H.-M. , Zhang, J. , Simin, G. , Yang, J. , and Khan, M. A. , 2003, “ Thermal Management of AlGaN-GaN HFETs on Sapphire Using Flip-Chip Bonding With Epoxy Underfill,” IEEE Electron Device Lett., 24(6), pp. 375–377. [CrossRef]
Agarwal, G. , Kazior, T. , Kenny, T. , and Weinstein, D. , 2016, “ Modeling and Analysis for Thermal Management in GaN HEMTs Using Microfluidic Cooling,” ASME J. Electron. Packag., 139(1), p. 011001. [CrossRef]
Brick, P. , and Schmid, T. , 2011, “ Automotive Headlamp Concepts With Low-Beam and High-Beam out of a Single LED,” Proc. SPIE, 8170, p. 817008.
Elger, G. , Spinger, B. , Bienen, N. , and Benter, N. , 2013, “ LED Matrix Light Source for Adaptive Driving Beam Applications,” 63rd Electronic Components and Technology Conference (ECTC), Las Vegas, NV, May 28–31, pp. 535–540.
Long, X. , He, J. , Zhou, J. , Fang, L. , Zhou, X. , Ren, F. , and Xu, T. , 2015, “ A Review on Light-Emitting Diode Based Automotive Headlamps,” Renewable Sustainable Energy Rev., 41, pp. 29–41. [CrossRef]
Narendran, N. , and Gu, Y. , 2005, “ Life of LED-Based White Light Sources,” J. Display Technol., 1(1), pp. 167–171. [CrossRef]
Wang, J. , Cai, Y.-X. , Zhao, X.-J. , and Zhang, C. , 2014, “ Thermal Design and Simulation of Automotive Headlamps Using White LEDs,” Microelectron. J., 45(2), pp. 249–255. [CrossRef]
Zhou, J. , Long, X.-M. , He, J.-G. , Fang, L. , and Li, X. , 2017, “ System-Level Thermal Design for LED Automotive Lamp-Based Multiobjective Simulation,” IEEE Trans. Compon., Packag. Manuf. Technol., 7(4), pp. 591–601. [CrossRef]
Arik, M. , Becker, C. , Weaver, S. , and Petroski, J. , 2003, “ Thermal Management of LEDs: Package to System,” Proc. SPIE, 5187, pp. 64–75.
Arik, M. , and Weaver, S. , 2004, “ Chip-Scale Thermal Management of High-Brightness LED Packages,” Proc. SPIE, 5530, p. 215.
Ha, J.-S. , Lee, S. , Lee, H.-J. , Lee, H.-J. , Lee, S. , Goto, H. , Kato, T. , Fujii, K. , Cho, M. , and Yao, T. , 2008, “ The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process,” IEEE Photonics Technol. Lett., 20(3), pp. 175–177. [CrossRef]
Liu, Y. , Leung, S. Y. , Zhao, J. , Wong, C. K. , Yuan, C. A. , Zhang, G. , Sun, F. , and Luo, L. , 2014, “ Thermal and Mechanical Effects of Voids Within Flip Chip Soldering in LED Packages,” Microelectron. Reliab., 54(9–10), pp. 2028–2033. [CrossRef]
Kim, H.-H. , Choi, S.-H. , Shin, S.-H. , Lee, Y.-G. , Choi, S.-M. , and Oh, Y.-S. , 2005, “ Thermal Transient Characteristics of Die Attach in High Power LED Package,” J. Microelectron. Packag. Soc., 12(4), pp. 331–338.
Fan, B. , Wu, H. , Zhao, Y. , Xian, Y. , Zhang, B. , and Wang, G. , 2008, “ Thermal Study of High-Power Nitride-Based Flip-Chip Light-Emitting Diodes,” IEEE Trans. Electron Devices, 55(12), pp. 3375–3382. [CrossRef]
Grötsch, S. , Pfeuffer, A. , Liebetrau, T. , Oppermann, H. , Brink, M. , Fiederling, R. , Möllers, I. , and Moisel, J. , 2015, “ Integrated High Resolution LED Light Sources in an AFS/ADB Headlamp,” International Symposium on Automotive Lighting, p. 241.
Wong, C. , and Bollampally, R. S. , 1999, “ Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging,” J. Appl. Polym. Sci., 74(14), pp. 3396–3403. [CrossRef]
Decrossas, E. , Glover, M. D. , Porter, K. , Cannon, T. , Stegeman, T. , Allen-McCormack, N. , Hamilton, M. C. , and Mantooth, H. A. , 2015, “ High-Performance and High-Data-Rate Quasi-Coaxial LTCC Vertical Interconnect Transitions for Multichip Modules and System-on-Package Applications,” IEEE Trans. Compon., Packag. Manuf. Technol., 5(3), pp. 307–313. [CrossRef]
Jeng, M.-J. , Chiang, K.-L. , Chang, H.-Y. , Yen, C.-Y. , Lin, C.-C. , Chang, Y.-H. , Lai, M.-J. , Lee, Y.-L. , and Chang, L.-B. , 2012, “ Heat Sink Performances of GaN/InGaN Flip-Chip Light-Emitting Diodes Fabricated on Silicon and AlN Submounts,” Microelectron. Reliab., 52(5), pp. 884–888. [CrossRef]
Jorda, X. , Perpina, X. , Vellvehi, M. , and Coleto, J. , 2008, “ Power-Substrate Static Thermal Characterization Based on a Test Chip,” IEEE Trans. Device Mater. Reliab., 8(4), pp. 671–679. [CrossRef]
Fishbein, I. , and Abramowitz, N. , 1992, “ Insulated Metal Substrates Improve in Performance and Product Implementation,” Seventh Annual Applied Power Electronics Conference and Exposition (APEC'92), pp. 633–638.
Yung, W. K. , 2007, “ Using Metal Core Printed Circuit Board (MCPCB) as a Solution for Thermal Management,” J. HKPCA, p. Q2
Cho, H. M. , and Kim, H. J. , 2008, “ Metal-Core Printed Circuit Board With Alumina Layer by Aerosol Deposition Process,” IEEE Electron Device Lett., 29(9), pp. 991–993. [CrossRef]
Juntunen, E. , Tapaninen, O. , Sitomaniemi, A. , Jämsä, M. , Heikkinen, V. , Karppinen, M. , and Karioja, P. , 2014, “ Copper-Core MCPCB With Thermal Vias for High-Power COB LED Modules,” IEEE Trans. Power Electron., 29(3), pp. 1410–1417. [CrossRef]
Juntunen, E. , Sitomaniemi, A. , Tapaninen, O. , Persons, R. , Challingsworth, M. , and Heikkinen, V. , 2012, “ Thermal Performance Comparison of Thick-Film Insulated Aluminum Substrates With Metal Core PCBs for High-Power LED Modules,” IEEE Trans. Compon., Packag. Manuf. Technol., 2(12), pp. 1957–1964. [CrossRef]
Park, J. K. , Lee, Y. K. , Choi, S. H. , Shin, S. H. , and Choi, M. S. , 2011, “ Formation of Through Aluminum Via for Noble Metal PCB and Packaging Substrate,” IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, May 31–June 3, pp. 1787–1790.
Karimpourian, B. , and Mahmoudi, J. , 2005, “ Some Important Considerations in Heatsink Design,” Sixth International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), Berlin, Germany, Apr. 18–20, pp. 406–413.
Yu, S.-H. , Lee, K.-S. , and Yook, S.-J. , 2011, “ Optimum Design of a Radial Heat Sink Under Natural Convection,” Int. J. Heat Mass Transfer, 54(11–12), pp. 2499–2505. [CrossRef]
Park, S. J. , and Lee, Y. L. , 2014, “ Study on the Development of High-Efficiency, Long-Life LED Fog Lamps for the Used Car Market,” Trans. Elect. Electron. Mater, 15(4), pp. 201–206. [CrossRef]
Jang, D. , Yook, S.-J. , and Lee, K.-S. , 2014, “ Optimum Design of a Radial Heat Sink With a Fin-Height Profile for High-Power LED Lighting Applications,” Appl. Energy, 116, pp. 260–268. [CrossRef]
Zhao, X.-J. , Cai, Y.-X. , Wang, J. , Li, X.-H. , and Zhang, C. , 2015, “ Thermal Model Design and Analysis of the High-Power LED Automotive Headlight Cooling Device,” Appl. Therm. Eng., 75, pp. 248–258. [CrossRef]
Jang, S. , and Shin, M. W. , 2008, “ Thermal Analysis of LED Arrays for Automotive Headlamp With a Novel Cooling System,” IEEE Trans. Device Mater. Reliab., 8(3), pp. 561–564. [CrossRef]
Lu, X.-y. , Hua, T.-C. , and Wang, Y.-P. , 2011, “ Thermal Analysis of High Power LED Package With Heat Pipe Heat Sink,” Microelectron. J., 42(11), pp. 1257–1262. [CrossRef]
Wang, Y. , Cen, J. , Jiang, F. , and Cao, W. , 2017, “ Heat Dissipation of High-Power Light Emitting Diode Chip on Board by a Novel Flat Plate Heat Pipe,” Appl. Therm. Eng., 123, pp. 19–28. [CrossRef]
Lai, Y. , Cordero, N. , Barthel, F. , Tebbe, F. , Kuhn, J. , Apfelbeck, R. , and Würtenberger, D. , 2009, “ Liquid Cooling of Bright LEDs for Automotive Applications,” Appl. Therm. Eng., 29(5–6), pp. 1239–1244. [CrossRef]
Li, J. , Lin, F. , Wang, D. , and Tian, W. , 2013, “ A Loop-Heat-Pipe Heat Sink With Parallel Condensers for High-Power Integrated LED Chips,” Appl. Therm. Eng., 56(1–2), pp. 18–26. [CrossRef]
Liu, S. , Lin, T. , Luo, X. , Chen, M. , and Jiang, X. , 2006, “ A Microjet Array Cooling System for Thermal Management of Active Radars and High-Brightness LEDs,” 56th Electronic Components and Technology Conference, San Diego, CA, May 30–June 2, p 5.
Wang, N. , C.-h, W. , Lei, J.-X. , and Zhu, D.-S. , 2009, “ Numerical Study on Thermal Management of LED Packaging by Using Thermoelectric Cooling,” International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP'09), Beijing, China, Aug. 10–13, pp. 433–437.

Figures

Grahic Jump Location
Fig. 1

Two-dimensional (2D) thermal map of a commercial-grade multifinger GaN high-electron-mobility transistor (HEMT) acquired by infrared thermography, demonstrating the technique's capability for qualitative hotspot identification

Grahic Jump Location
Fig. 2

Visualizations of the various photon scattering processes that can occur when a photon of energy 0 is incident upon a material

Grahic Jump Location
Fig. 3

Typical Raman spectrum acquired from probing the semiconductor channel region of a GaN HEMT

Grahic Jump Location
Fig. 4

Comparison of temperature change in the channel region of a GaN HEMT versus various power dissipation levels measured by infrared and Raman thermography. It should be noted that uncertainty at 95% confidence has been included for the results from Raman thermometry. For infrared thermography, no uncertainty has been reported as this method utilizes built-in software provided by the manufacturer to produce a single 2D thermal map.

Grahic Jump Location
Fig. 5

Two-dimensional thermal map (left) and CCD image (right) of a GaN HEMT acquired by thermoreflectance thermal imaging, demonstrating the technique's capability to probe the temperature rise of metallization structures

Grahic Jump Location
Fig. 6

Two-dimensional thermal map (left) and CCD image (right) of a GaN micro-LED array acquired by thermoreflectance thermal imaging, demonstrating the technique's applicability to optoelectronic devices

Grahic Jump Location
Fig. 7

Peak operating temperatures of HEMTs on various substrates with different thermal conductivities, demonstrating self-heating effects during operation (Reproduced from Ref. [55] with permission, Copyright 2017, AIP Publishing)

Grahic Jump Location
Fig. 8

Temperature rise due to self-heating as a function of depth from the device surface into the substrate, recorded at the center of an ungated AlGaN/GaN HEMT device on different substrates measured by Raman spectroscopy (Reproduced from Ref. [64] with permission, Copyright 2007, IEEE)

Grahic Jump Location
Fig. 9

(a) Setup for measuring the temperature distributions from the side of the AlGaN/GaN HEMTs on the diamond or SiC substrates. Temperature distribution of the AlGaN/GaN HEMTs on (b) diamond and (c) SiC substrates at a dissipated power of 2 W (3.2 W/mm). (d) Dissipated power dependence of device temperature for AlGaN/GaN HEMTs on the diamond and SiC substrates (Reproduced from Ref. [68] with permission, Copyright 2011, AIP Publishing).

Grahic Jump Location
Fig. 10

Schematic views of the process sequence for the transfer of an AlGaN/ GaN HEMT from a sapphire substrate to a copper plate (Reproduced from Ref. [70] with permission, Copyright 2014, AIP Publishing)

Grahic Jump Location
Fig. 11

Vertical temperature distributions across epitaxial layers directly under the gate finger for the reference HEMT with a through-wafer source-contact via hole and the HEMT with both a through-wafer source-contact via hole and an additional through Si-substrate via hole under the active area filled with copper (Reproduced from Ref. [72] with permission, Copyright 2014, AIP Publishing)

Grahic Jump Location
Fig. 12

Schematic of the FLG-graphite heat spreaders attached to the drain contact of the AlGaN/GaN HEMTs [73]

Grahic Jump Location
Fig. 13

Schematic diagram of the AlGaN/GaN HFETs with multilevel metallization (Reproduced from Ref. [77] with permission, Copyright 2017, The Japan Society of Applied Physics)

Grahic Jump Location
Fig. 14

Schematics of the flip-chip bonded AlGaN–GaN HFETs with epoxy underfill (Reproduced from Ref. [83] with permission, Copyright 2003, IEEE)

Grahic Jump Location
Fig. 15

Light output as a function of time for high-power white LEDs operated at various ambient temperatures (Reproduced from Ref. [88] with permission, Copyright 2005, IEEE)

Grahic Jump Location
Fig. 16

Optical part of real a commercial HID headlamp product

Grahic Jump Location
Fig. 17

Thermal resistance networks in an LED headlamp for a vehicle

Grahic Jump Location
Fig. 18

Typical resistance network for an LED illumination system (Reproduced from Ref. [91] with permission, Copyright 2004, Society of Photo Optical Instrumentation Engineers (SPIE))

Grahic Jump Location
Fig. 19

Measured cumulative structure functions of high power LED packages incorporating three different die attach materials (Reproduced from Ref. [95] with permission, Copyright 2005, The Korean Microelectronics and Packaging Society (KMEPS))

Grahic Jump Location
Fig. 20

Schematic structure of the (a) insulated metal substrate and (b) metal core printed circuit board (Reproduced from Ref. [106] with permission, Copyright 2012, IEEE)

Grahic Jump Location
Fig. 21

Section view of the cooling system: (a) air-cooling system without fins and (b) air-cooling system with fins installed (Reproduced from Ref. [113] with permission, Copyright 2008, IEEE)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In