Experimental Analysis of Thermal Cycling Fatigue of Four-Layered FR4 Printed Wiring Boards

[+] Author and Article Information
Tsung-Yu Pan, Ronald R. Cooper, Howard D. Blair, Thomas J. Whalen, John M. Nicholson

Ford Research Laboratory, Ford Motor Company, 20,000 Rotunda Drive, Mail Drop 2313 SRL Building, Dearborn, MI 48121-2053

J. Electron. Packag 116(2), 76-82 (Jun 01, 1994) (7 pages) doi:10.1115/1.2905508 History: Received August 01, 1993; Online April 28, 2008


Long-term reliability of electronic packaging has become a greater challenge as a result of ever increasing power requirements and the decreasing size of electronic packages. In this study, the effects of three variables on plated-through hole (PTH) design have been investigated on the thermal cycling fatigue lives in four-layered printed wiring boards (PWB’s). These three variables were evaluated at two levels each: (a) hole size (0.030 and 0.040 in.), (b) internal pad (presence or absence), and (c) epoxy-plugged holes (plugged or unplugged). The electrical resistance was measured on 40 test boards with 23 design of 8 daisy-chain PTH nets each. Full factorial analysis and analysis of variance indicate that all three factors had significant influence on PTH fatigue life, but no two-factor or three-factor interactions were found. Metallurgical analysis reveals that the failure mechanism is barrel cracking near the internal pad. This mechanism has been illustrated by a finite element analysis in this study and correlated by a SEM stereoimaging analysis in the literature. The increase of electrical resistance with thermal cycles correlates well with an analytical barrel crack model. The crack length in each net at specific cycles is calculated, but fails to match predictions from a fracture mechanics model.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In