Thermomechanical Modeling of Direct Chip Interconnection Assembly

[+] Author and Article Information
E. K. Buratynski

AT&T Bell Laboratories, Princeton, NJ 08540

J. Electron. Packag 115(4), 382-391 (Dec 01, 1993) (10 pages) doi:10.1115/1.2909347 History: Received April 10, 1993; Online April 28, 2008


Efforts to model thermomechanical aspects of the Direct Chip Interconnection (DCI) assembly process are described. DCI is a method to simultaneously attach and electrically interconnect bare chips to a substrate using Anisotropic Conductive Adhesive Films (ACAF). Emphasis has been placed on describing the numerical procedure used in the analysis. The major components of the analysis include a calibration procedure to “numerically measure” anisotropic properties of the film, a curing model to capture “frozen-in” stresses, a global analysis that considers the overall assembly station but does not resolve details of the interconnection, and a local model, coupled to the global model, that resolves details about the interconnection. Typical results are shown to demonstrate the capabilities of the model.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In