Thermal Stresses in Layered Electrical Assemblies Bonded With Solder

[+] Author and Article Information
H. S. Morgan

Sandia National Laboratories, Albuquerque, N.M. 87185

J. Electron. Packag 113(4), 350-354 (Dec 01, 1991) (5 pages) doi:10.1115/1.2905419 History: Received September 01, 1990; Revised August 20, 1991; Online April 28, 2008


Thermal stresses in a layered electrical assembly joined with solder are computed with plane strain, generalized plane strain, and three-dimensional (3D) finite element models to assess the accuracy of the two-dimensional (2D) modeling assumptions. Cases in which the solder is treated as an elastic and as a creeping material are considered. Comparison of the various solutions shows that, away from the corners, the generalized plane strain model produces residual stresses that are identical to those computed with the 3D model. Although the generalized plane strain model cannot capture corner stresses, the maximum stresses computed with this 2D model are, for the mesh discretization used, within 12 percent of the corner stresses computed with the 3D model when the solder is modeled elastically and within 5 percent when the solder is modeled as a creeping material. Plane strain is not a valid assumption for predicting thermal stresses, especially when creep of the solder is modeled. The effect of cooling rate on the residual stresses computed with creep models is illustrated.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In