Modeling Thermal Stress Behavior in Microelectronic Components

[+] Author and Article Information
G. C. Scott

AT&T Bell Laboratories, Engineering Research Center, Princeton, NJ 08540

G. Astfalk

Convex Computer Corporation, Greenbelt, MD 20770

J. Electron. Packag 112(1), 35-40 (Mar 01, 1990) (6 pages) doi:10.1115/1.2904338 History: Received January 15, 1990; Online April 28, 2008


Thermal stress cracking is a significant mechanical failure mode in microelectronic components. This failure results from elevated stresses in components exposed to elevated temperatures due to the mismatch of thermal and mechanical properties of the constituent materials. The underlying mechanism responsible for these elevated stresses is not well understood. Therefore, we developed general mathematical and computational techniques for modeling the evolution of these stresses. As a test vehicle, we applied these techniques to thermal stress evolution in multilayer ceramic capacitors (MLCC). Thermal stress cracking has been implicated in significant, industry-wide problems associated with the cracking of these components. The model is used to solve for the transient development of thermal and mechanical gradients across the two spatial dimensions of the MLCC mid-plane. Material types with different thermal and mechanical properties and the interfaces between the material types are specifically included in the model. The stress field solutions are used to indicate when and where mechanical failure is expected to occur. The solutions of the model equations have been obtained using special partial differential equation solvers implemented on a CONVEX C120/220 supercomputer. The model is used to investigate the effects of MLCC termination geometry and material properties on the evolution of thermal stresses.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In