Bistable composite laminates have received a considerable attention due to their fabulous behavior and potential for morphing and energy harvesting. A bistable or multistable laminate is a type of composite structure that exhibits multiple stable static configurations. The characterization of unsymmetric fiber-reinforced laminated composite plates as a bistable structure is well established and quantitatively determined after about 30 years of research. As predicting cured shapes of unsymmetric composite laminates became well identified, attention was directed to the design of these structures for morphing applications. Bistable composite laminates have attracted researchers as a morphing structure because a bistable structure settles at one of its equilibrium positions without demanding continuous power to remain there. If the structure is triggered to leave an equilibrium position, it will snap or jump to the other equilibrium position. The snapthrough response is highly geometrically nonlinear. With the increased demand for broadband vibration energy harvesters, bistable composite laminates, which are able to gain large-amplitude vibrations in snapthrough motion, have recently attracted attention. This paper aims to summarize, review, and assess references and findings concerned with the response of bistable composite laminates for morphing and energy harvesting to date. It also highlights the remaining challenges and possible future research work as research in bistable composites transitions from phenomena to application.

References

1.
Hyer
,
M. W.
,
1981
, “
Some Observations on the Cured Shape of Thin Unsymmetric Laminates
,”
J. Compos. Mater.
,
15
(
2
), pp.
175
194
.
2.
Hyer
,
M. W.
,
1981
, “
Calculation of the Room-Temperature Shapes of Unsymmetric Laminates
,” Report No. NASA-CR-163993.
3.
Hyer
,
M. W.
,
1982
, “
The Room-Temperature Shapes of Four-Layer Unsymmetric Cross-Ply Laminates
,”
J. Compos. Mater.
,
16
(
4
), pp.
318
340
.
4.
Smith
,
C. B.
,
1953
, “
Some New Types of Orthotropic Plates Laminated of Orthotropic Material
,”
ASME J. Appl. Mech.
,
20
(
2
), pp.
286
288
.
5.
Reissner
,
E.
, and
Stavsky
,
Y.
,
1961
, “
Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
402
408
.
6.
Whitney
,
J. M.
, and
Liessa
,
A. W.
,
1969
, “
Analysis of Heterogeneous of Anisotropic Plates
,”
ASME J. Appl. Mech.
,
36
(
2
), pp.
261
269
.
7.
Ashton
,
J. E.
, and
Love
,
T. S.
,
1969
, “
Experimental Study of the Stability of Composite Plates
,”
J. Compos. Mater.
,
3
(
2
), pp.
230
242
.
8.
Ashton
,
J. E.
,
1969
, “
Approximate Solutions for Unsymmetrically Laminated Plates
,”
J. Compos. Mater.
,
3
(
1
), pp.
189
191
.
9.
Bert
,
C. W.
, and
Mayberry
,
B. L.
,
1969
, “
Free Vibrations of Unsymmetrically Laminated Anisotropic Plates With Clamped Edges
,”
J. Compos. Mater.
,
3
(
2
), pp.
282
293
.
10.
Leissa
,
A. W.
, and
Whitney
,
J. M.
,
1970
, “
Analysis of a Simply Supported Laminated Anisotropic Rectangular Plate
,”
AIAA J.
,
8
(
1
), pp.
28
33
.
11.
Thornton
,
E. A.
, and
Clary
,
R. R.
,
1974
, “
A Correlation Study of Finite-Element Modeling for Vibrations of Composite Material Panels
,”
3rd Conference on Composite Materials: Testing and Design
, pp.
111
129
.
12.
Hyer
,
M. W.
, and
Bhavani
,
P. C.
,
1984
, “
Suppression of Anticlastic Curvature in Isotropic and Composite Plate
,”
Int. J. Solids Struct.
,
20
(
6
), pp.
553
570
.
13.
Hamamoto
,
A.
, and
Hyer
,
M. W.
,
1987
, “
Non-Linear Temperature-Curvature Relationships for Unsymmetric Graphite-Epoxy Laminates
,”
Int. J. Solids Struct.
,
23
(
7
), pp.
919
935
.
14.
Betts
,
D. N.
,
Salo
,
I. T.
,
Bowen
,
C. R.
, and
Kim
,
H. A.
,
2010
, “
Characterisation and Modelling of the Cured Shapes of Arbitrary Layup Bistable Composite Laminates
,”
Compos. Struct.
,
92
(
7
), pp.
1694
1700
.
15.
Dang
,
J.
, and
Tang
,
Y.
,
1986
, “
Calculation of the Room-Temperature Shapes of Unsymmetric Laminates
,”
International Symposium on Composite Materials and Structures
, Beijing, June 10–13, Technomic Publishing, Lancaster, PA, pp.
201
206
.
16.
Jun
,
W. J.
, and
Hong
,
C. S.
,
1992
, “
Cured Shapes of Unsymmetric Laminates With Arbitrary Lay-Up Angles
,”
J. Reinf. Plast. Compos.
,
11
(
12
), pp.
1352
1366
.
17.
Peeters
,
L. J. B.
,
Powell
,
P. C.
, and
Warnet
,
L.
,
1996
, “
Thermally Induced Shapes of Unsymmetric Laminates
,”
J. Compos. Mater.
,
30
(
5
), pp.
603
626
.
18.
Dano
,
M. L.
, and
Hyer
,
M. W.
,
1998
, “
Thermally Induced Deformation Behavior of Unsymmetric Laminates
,”
Int. J. Solids Struct.
,
35
(
17
), pp.
2101
2120
.
19.
Dano
,
M. L.
, and
Hyer
,
M. W.
,
2002
, “
Snap-Through of Unsymmetric Fiber-Reinforced Composite Laminates
,”
Int. J. Solids Struct.
,
39
(
1
), pp.
175
198
.
20.
Mattioni
,
F.
,
Weaver
,
P. M.
, and
Friswell
,
M. I.
,
2009
, “
Multistable Composite Plates With Piecewise Variation of Lay-Up in the Platform
,”
Int. J. Solids Struct.
,
46
(
1
), pp.
151
164
.
21.
Diaconu
,
C. G.
,
Weaver
,
P. M.
, and
Mattioni
,
F.
,
2008
, “
Concepts for Morphing Airfoil Sections Using Bi-Stable Laminated Composite Structures
,”
Thin-Walled Struct.
,
46
(
6
), pp.
689
701
.
22.
Schlecht
,
M.
,
Schulte
,
K.
, and
Hyer
,
M. W.
,
1995
, “
Advanced Calculation of the Room-Temperature Shapes of Thin Unsymmetric Composite Laminates
,”
Compos. Struct.
,
32
(
1–4
), pp.
627
633
.
23.
Schlecht
,
M.
, and
Schulte
,
K.
,
1999
, “
Advanced Calculations of the Room-Temperature Shapes of Unsymmetric Laminates
,”
J. Compos. Mater.
,
33
(
16
), pp.
1472
1490
.
24.
Giddings
,
P. F.
,
Bowen
,
C. R.
,
Salo
,
A. I. T.
,
Kim
,
H. A.
, and
Ive
,
A.
,
2010
, “
Bistable Composite Laminates: Effects of Laminate Composition on Cured Shape and Response to Thermal Load
,”
Compos. Struct.
,
92
(
9
), pp.
2220
2225
.
25.
Brampton
,
C. J.
,
Betts
,
D. N.
,
Bowen
,
C. R.
, and
Kim
,
H. A.
,
2013
, “
Sensitivity of Bistable Laminates to Uncertainties in Material Properties, Geometry and Environmental Conditions
,”
Compos. Struct.
,
102
, pp.
276
286
.
26.
Diaconu
,
C. G.
,
Weaver
,
P. M.
, and
Arrieta
,
A. F.
,
2009
, “
Dynamic Analysis of Bi-Stable Composite Plates
,”
J. Sound Vib.
,
322
(
4–5
), pp.
987
1004
.
27.
Vogl
,
G. A.
, and
Hyer
,
M. W.
,
2011
, “
Natural Vibration of Unsymmetric Cross-Ply Laminates
,”
J. Sound Vib.
,
330
(
20
), pp.
4764
4779
.
28.
Betts
,
D. N.
,
Bowen
,
C. R.
,
Kim
,
H. A.
,
Guyer
,
R. A.
,
Bas
,
P.
, and
Inman
,
D. J.
,
2014
, “
Modelling the Dynamic Response of Bistable Composite Plates for Piezoelectric Energy Harvesting
,”
55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, National Harbor, MD, Jan. 13–17,
AIAA
Paper No. 2014-0154.
29.
Cho
,
M.
,
Choi
,
M. H.
,
Chung
,
H. C.
,
Ahn
,
K. J.
, and
Eom
,
Y. S.
,
1998
, “
A Study on the Room-Temperature Curvature Shapes of Unsymmetric Laminates Including Slippage Effects
,”
J. Compos. Mater.
,
32
(
5
), pp.
460
482
.
30.
Moore
,
M.
,
Ziaei-Rad
,
S.
, and
Salehi
,
H.
,
2013
, “
Thermal Response and Stability Characteristics of Bistable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers
,”
Appl. Compos. Mater.
,
20
(
1
), pp.
87
106
.
31.
Eckstein
,
E.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2013
, “
Morphing High-Temperature Composite Plates Utilizing Thermal Gradients
,”
Compos. Struct.
,
100
, pp.
363
372
.
32.
Daynes
,
S.
,
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2008
, “
Bistable Prestressed Buckled Laminates
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3431
3437
.
33.
Daton-Lovett
,
A.
,
1996
, “
An Extendible Member, Patent Cooperation Treaty Application
,” Patent No. PCT/GB97/00839.
34.
Zhang
,
Z.
,
Wu
,
H.
,
He
,
X.
,
Wu
,
H.
,
Bao
,
Y.
, and
Chai
,
G.
,
2013
, “
The Bistable Behaviors of Carbon-Fiber/Epoxy Anti-Symmetric Composite Shells
,”
Composites, Part B
,
47
, pp.
190
199
.
35.
Iqbal
,
K.
,
Pellegrino
,
S.
, and
Daton-Lovett
,
A.
,
1998
, “
Bi-Stable Composite Slit Tubes
,”
IUTAM–IASS Symposium on Deployable Structures: Theory and Applications
, Cambridge, UK, Sept. 6–9, pp.
153
162
.
36.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
2006
, “
Analytical Models for Bistable Cylindrical Shells
,”
Proc. R. Soc. A
,
462
(
2067
), pp.
839
854
.
37.
Iqbal
,
K.
, and
Pellegrino
,
S.
,
2000
, “
Bi-Stable Composite Shells
,”
AIAA
Paper No. 2000–1385.
38.
Lei
,
Y. M.
, and
Yao
,
X. F.
,
2009
, “
Experimental Study of Bistable Behaviors of Deployable Composite Structure
,”
J. Reinf. Plast. Compos.
,
29
(
6
), pp.
865
873
.
39.
Zhang
,
Z.
,
Wu
,
H.
,
Wu
,
H.
,
He
,
X.
,
Bao
,
Y.
, and
Chai
,
G.
,
2013
, “
Bistable Characteristics of Irregular Anti-Symmetric Lay-Up Composite Cylindrical Shells
,”
Int. J. Struct. Stab. Dyn.
,
13
(
6
), p.
1350029
.
40.
Zhang
,
Z.
,
Wu
,
H.
,
Ye
,
G.
,
Wu
,
H.
,
He
,
X.
, and
Chai
,
G.
,
2014
, “
Systematic Experimental and Numerical Study of Bistable Snap Processes for Anti-Symmetric Cylindrical Shells
,”
Compos. Struct.
,
112
(
1
), pp.
368
377
.
41.
Li
,
H.
,
Dai
,
F.
,
Weaver
,
P. M.
, and
Du
,
S.
,
2014
, “
Bistable Hybrid Symmetric Laminates
,”
Compos. Struct.
,
116
(
1
), pp.
782
792
.
42.
Dai
,
F.
,
Li
,
H.
, and
Du
,
S.
,
2013
, “
Cured Shape and Snap-Through of Bistable Twisting Hybrid [0/90/Metal]T Laminates
,”
Compos. Sci. Technol.
,
86
, pp.
76
81
.
43.
Dano
,
M. L.
, and
Hyer
,
M. W.
,
1996
, “
The Response of Unsymmetric Laminates to Simple Applied Forces
,”
Mech. Compos. Mater. Struct.
,
3
(
1
), pp.
65
80
.
44.
Pirrera
,
D.
,
Avitabile
,
P. M.
, and
Weaver
,
P. M.
,
2010
, “
Bistable Plates for Morphing Structures: A Refined Analytical Approach With High-Order Polynomials
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3412
3425
.
45.
Pirrera
,
A.
,
Avitabile
,
D.
, and
Weaver
,
P. M.
,
2012
, “
On the Thermally Induced Bistability of Composite Cylindrical Shells for Morphing Structures
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
685
700
.
46.
Tawfik
,
S.
,
Xinyan Tan
,
T.
,
Ozbay
,
S.
, and
Armanios
,
E.
,
2007
, “
Anticlastic Stability Modeling for Cross-Ply Composites
,”
J. Compos. Mater.
,
41
(
11
), pp.
1325
1338
.
47.
Cantera
,
M. A.
,
Romera
,
J. M.
,
Adarraga
,
I.
, and
Mujika
,
F.
,
2015
, “
Modelling and Testing of the Snap-Through Process of Bi-Stable Cross-Ply Composites
,”
Compos. Struct.
,
120
, pp.
41
52
.
48.
Schultz
,
M. R.
, and
Hyer
,
M. W.
,
2003
, “
Snap-Through of Unsymmetric Cross-Ply Laminates Using Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
14
(
12
), pp.
795
814
.
49.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R. M.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
823
877
.
50.
Thill
,
C.
,
Etches
,
J.
,
Bond
,
I.
,
Potter
,
K.
, and
Weaver
,
P.
,
2008
, “
Morphing Skins
,”
Aeronaut. J.
,
112
(
1129
), pp.
117
139
.
51.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
.
52.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Shape-Morphing Automobile Structures: Concepts and Outlook
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
11
), pp.
1603
1622
.
53.
Portela
,
P.
,
Camanho
,
P.
,
Weaver
,
P.
, and
Bond
,
I.
,
2008
, “
Analysis of Morphing, Multi Stable Structures Actuated by Piezoelectric Patches
,”
Comput. Struct.
,
86
(
3–5
), pp.
347
356
.
54.
Bowen
,
C. R.
,
Butler
,
R.
,
Jervis
,
V.
,
Kim
,
H. A.
, and
Salo
,
A. I. T.
,
2007
, “
Morphing and Shape Control Using Unsymmetrical Composites
,”
J. Intell. Mater. Syst. Struct.
,
18
(
1
), pp.
89
98
.
55.
Bowen
,
C. R.
,
Giddings
,
P. F.
,
Salo
,
A. I. T.
, and
Kim
,
H. A.
,
2011
, “
Modeling and Characterization of Piezoelectrically Actuated Bistable Composites
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
58
(
9
), pp.
1737
1750
.
56.
Arrieta
,
A. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2009
, “
Nonlinear Dynamic Response and Modeling of a Bistable Composite Plate for Applications to Adaptive Structures
,”
Nonlinear Dyn.
,
58
(
1
), pp.
259
272
.
57.
Arrieta
,
A. F.
,
Wagg
,
D. J.
, and
Neild
,
S. A.
,
2011
, “
Dynamic Snap-Through for Morphing of Bistable Composite Plates
,”
J. Intell. Mater. Syst. Struct.
,
22
(
2
), pp.
103
112
.
58.
Arrieta
,
A. F.
,
Spelsberg-Korspeter
,
G.
,
Hagedorn
,
P.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2011
, “
Low-Order Model for the Dynamics of Bistable Composite Plates
,”
J. Intell. Mater. Syst. Struct.
,
22
(
17
), pp.
2025
2043
.
59.
Arrieta
,
A. F.
,
Bilgen
,
O.
,
Friswell
,
M. I.
, and
Hagedorn
,
P.
,
2012
, “
Dynamic Control for Morphing of Bistable Composites
,”
J. Intell. Mater. Syst. Struct.
,
24
(
3
), pp.
266
273
.
60.
Potter
,
K.
,
Weaver
,
P. M.
,
Abu Seman
,
A.
, and
Shah
,
S.
,
2007
, “
Phenomena in the Bifurcation of Unsymmetric Composite Plates
,”
Composites, Part A
,
38
(
1
), pp.
100
106
.
61.
Panesar
,
A. S.
, and
Weaver
,
P. M.
,
2012
, “
Optimisation of Blended Bistable Laminates for a Morphing Flap
,”
Compos. Struct.
,
94
(
10
), pp.
3092
3105
.
62.
Gude
,
M.
,
Hufenbach
,
W.
, and
Kirvel
,
C.
,
2011
, “
Piezoelectrically Driven Morphing Structures Based on Bistable Unsymmetric Laminates
,”
Compos. Struct.
,
93
(
2
), pp.
377
382
.
63.
Betts
,
D. N.
,
Kim
,
H. A.
, and
Bowen
,
C. R.
,
2011
, “
Modeling and Optimization of Bistable Composite Laminates for Piezoelectric Actuation
,”
J. Intell. Mater. Syst. Struct.
,
22
(
18
), pp.
2181
2191
.
64.
Sousa
,
C. S.
,
Camanho
,
P. P.
, and
Suleman
,
A.
,
2013
, “
Analysis of Multistable Variable Stiffness Composite Plates
,”
Compos. Struct.
,
98
, pp.
34
46
.
65.
Mattioni
,
F.
,
Weaver
,
P. M.
,
Potter
,
K. D.
, and
Friswell
,
M. I.
,
2008
, “
Analysis of Thermally Induced Multistable Composites
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
657
675
.
66.
Bowen
,
C. R.
,
Betts
,
D. N.
,
Giddings
,
P. F.
,
Salo
,
A. I. T.
, and
Kim
,
H. A.
,
2012
, “
A Study of Bistable Laminates of Generic Lay-Up for Adaptive Structures
,”
Strain
,
48
(
3
), pp.
235
240
.
67.
Schultz
,
M. R.
,
2008
, “
A Concept for Airfoil-Like Active Bistable Twisting Structures
,”
J. Intell. Mater. Syst. Struct.
,
19
(
2
), pp.
157
169
.
68.
Hufenbach
,
W.
,
Gude
,
M.
, and
Kroll
,
L.
,
2002
, “
Design of Multistable Composites for Application in Adaptive Structures
,”
Compos. Sci. Technol.
,
62
(
16
), pp.
2201
2207
.
69.
Hufenbach
,
W.
,
Gude
,
M.
, and
Czulak
,
A.
,
2006
, “
Actor-Initiated Snap-Through of Unsymmetric Composites With Multiple Deformation States
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
225
230
.
70.
Hufenbach
,
W.
, and
Gude
,
M.
,
2002
, “
Analysis and Optimisation of Multistable Composites Under Residual Stresses
,”
Compos. Struct.
,
55
(
3
), pp.
319
327
.
71.
Daynes
,
S.
, and
Weaver
,
P.
,
2010
, “
Analysis of Unsymmetric CFRP-Metal Hybrid Laminates for Use in Adaptive Structures
,”
Composites, Part A
,
41
(
11
), pp.
1712
1718
.
72.
Fernandes
,
F.
,
Maurini
,
C.
, and
Vidoli
,
S.
,
2010
, “
Multiparameter Actuation for Shape Control of Bistable Composite Plates
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1449
1458
.
73.
Mattioni
,
F.
,
Weaver
,
P. M.
,
Potter
,
K. D.
, and
Friswell
,
M. I.
,
2008
, “
The Application of Thermally Induced Multistable Composites to Morphing Aircraft Structures
,”
Proc. SPIE
,
6930
, p.
693012
.
74.
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2004
, “
A Concept for the Generation of Out-of-Plane Distortion From Tailored FRP Laminates
,”
Composites, Part A
,
35
(
12
), pp.
1353
1361
.
75.
Kebadze
,
E.
,
Guest
,
S. D.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids Struct.
,
41
(
11
), pp.
2801
2820
.
76.
Shaw
,
A. D.
,
Neild
,
S. A.
,
Wagg
,
D. J.
,
Weaver
,
P. M.
, and
Carrella
,
A.
,
2013
, “
A Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation
,”
J. Sound Vib.
,
332
(
34
), pp.
6265
6275
.
77.
Tawfik
,
S. A.
,
Dancila
,
D. S.
, and
Armanios
,
E.
,
2011
, “
Platform Effects Upon the Bistable Response of Cross-Ply Composite Shells
,”
Composites, Part A
,
42
(
7
), pp.
825
833
.
78.
Pirrera
,
A.
,
Lachenal
,
X.
,
Daynes
,
S.
,
Weaver
,
P. M.
, and
Chenchiah
,
I. V.
,
2013
, “
Multi-Stable Cylindrical Lattices
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2087
2107
.
79.
Daynes
,
S.
,
Weaver
,
P. M.
, and
Potter
,
K. D.
,
2009
, “
Aeroelastic Study of Bistable Composite Airfoils
,”
J. Aircr.
,
46
(
6
), pp.
2169
2173
.
80.
Daynes
,
S.
,
Nall
,
S. J.
,
Weaver
,
P. M.
,
Potter
,
K. D.
,
Margaris
,
P.
, and
Mellor
,
P. H.
,
2009
, “
On a Bistable Flap for an Airfoil
,”
AIAA
Paper No. 2009-2103.
81.
Mattioni
,
F.
,
Gatto
,
A.
,
Weaver
,
P. M.
,
Friswell
,
M. I.
, and
Potter
,
K. D.
,
2006
, “
The Application of Residual Stress Tailoring of Snap-Through Composites for Variable Sweep Wings
,”
AIAA
Paper No. 2006-1972.
82.
Vidoli
,
S.
, and
Maurini
,
C.
,
2008
, “
Tristability of Thin Orthotropic Shells With Uniform Initial Curvature
,”
Proc. R. Soc. A
,
464
(
2099
), pp.
2949
2966
.
83.
Arrieta
,
A. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2011
, “
On the Cross-Well Dynamics of a Bi-Stable Composite Plate
,”
J. Sound Vib.
,
330
(
14
), pp.
3424
3441
.
84.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions, Analytical, Computational, and Experimental Methods
,
Wiley-VCH
,
New York
.
85.
Elvin
,
N.
, and
Erturk
,
A.
,
2013
,
Advances in Energy Harvesting Methods
,
Springer
, New York.
86.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
87.
Giomi
,
L.
, and
Mahadevan
,
L.
,
2012
, “
Multi-Stability of Free Spontaneously Curved Anisotropic Strips
,”
Proc. R. Soc. A
,
468
(
2138
), pp.
511
530
.
88.
Gigliotti
,
M.
,
Wisnom
,
M. R.
, and
Potter
,
K. D.
,
2003
, “
Development of Curvature During the Cure of AS4/8552 [0/90] Unsymmetric Composite Plates
,”
Compos. Sci. Technol.
,
63
(
2
), pp.
187
197
.
89.
Seffen
,
K. A.
,
2007
, “
‘Morphing’ Bistable Orthotropic Elliptical Shallow Shells
,”
Proc. R. Soc. A
,
463
(
2077
), pp.
67
83
.
90.
Brinkmeyer
,
A.
,
Santer
,
M.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2012
, “
Pseudo-Bistable Self-Actuated Domes for Morphing Applications
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1077
1087
.
91.
Brinkmeyer
,
A.
,
Pirrera
,
A.
,
Santer
,
M.
, and
Weaver
,
P. M.
,
2013
, “
Pseudo-Bistable Pre-Stressed Morphing Composite Panels
,”
Int. J. Solids Struct.
,
50
(
7–8
), pp.
1033
1043
.
92.
Coburn
,
B. H.
,
Pirrera
,
A.
,
Weaver
,
P. M.
, and
Vidoli
,
S.
,
2013
, “
Tristability of an Orthotropic Doubly Curved Shell
,”
Compos. Struct.
,
96
, pp.
446
454
.
93.
Eckstein
,
E.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2014
, “
Multi-Mode Morphing Using Initially Curved Composite Plates
,”
Compos. Struct.
,
109
, pp.
240
245
.
94.
Daynes
,
S.
,
Weaver
,
P. M.
, and
Trevarthen
,
J. A.
,
2011
, “
A Morphing Composite Air Inlet With Multiple Stable Shapes
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
961
973
.
95.
Dai
,
F.
,
Li
,
H.
, and
Du
,
S.
,
2012
, “
Design and Analysis of a Tri-Stable Structure Based on Bi-Stable Laminates
,”
Composites, Part A
,
43
(
9
), pp.
1497
1504
.
96.
Dai
,
F.
,
Li
,
H.
, and
Du
,
S.
,
2013
, “
A Multi-Stable Wavy Skin Based on Bi-Stable Laminates
,”
Composites, Part A
,
45
, pp.
102
108
.
97.
Dai
,
F.
,
Li
,
H.
, and
Du
,
S.
,
2013
, “
A Multi-Stable Lattice Structure and Its Snap-Through Behavior Among Multiple States
,”
Compos. Struct.
,
97
, pp.
56
63
.
98.
Daynes
,
S.
,
Nall
,
S. J.
,
Weaver
,
P. M.
,
Potter
,
K. D.
,
Margaris
,
P.
, and
Mellor
,
P. H.
,
2010
, “
Bistable Composite Flap for an Airfoil
,”
J. Aircr.
,
47
(
1
), pp.
334
338
.
99.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.
100.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
101.
Arrieta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
,
2010
, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), p.
104102
.
102.
Betts
,
D. N.
,
Kim
,
H. A.
,
Bowen
,
C. R.
, and
Inman
,
D. J.
,
2012
, “
Optimal Configurations of Bistable Piezo-Composites for Energy Harvesting
,”
Appl. Phys. Lett.
,
100
(
11
), p.
114104
.
103.
Betts
,
D. N.
,
Kim
,
H. A.
,
Bowen
,
C. R.
, and
Inman
,
D. J.
,
2012
, “
Static and Dynamic Analysis of Bistable Piezoelectric-Composite Plates for Energy Harvesting
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
, Honolulu, HI, Apr. 23–26,
AIAA
Paper No. 2012-1492.
104.
Betts
,
D. N.
,
Bowen
,
C. R.
,
Kim
,
H. A.
,
Gathercole
,
N.
,
Clarke
,
C. T.
, and
Inman
,
D. J.
,
2013
, “
Nonlinear Dynamics of a Bistable Piezoelectric Composite Energy Harvester for Broadband Application
,”
Eur. Phys. J.: Spec. Top.
,
222
(
7
), pp.
1553
1562
.
You do not currently have access to this content.