In this paper, we present a critical survey on homogenization theory and related techniques applied to micromechanics. The validation of homogenization results, the characterization of composite materials and the optimal design of complex structures are issues of great technological importance and are viewed here as a combination of mathematical and mechanical homogenization. The mathematical tools for modeling sequentially layered composites are explained. The influence of initial and boundary conditions on the effective properties in nonlinear problems is clarified and the notion of stability by homogenization is analyzed. Multiscale micromechanics methods are outlined and the classical as well as the emerging analytical and computational techniques are presented. Computation of effective static and dynamical properties of materials with linear or nonlinear constitutive equations is closely related to the development of generalized theories such as the strain-gradient mechanics. Selected applications of these techniques are outlined. Moreover, the extension of kinetic techniques in homogenization and the related inverse imaging problem are presented.

1.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
2.
Kroner
,
E.
, 1972,
Statistical Continuum Mechanics
(
CISM Lecture Notes
, 92),
Springer-Verlag
,
New York
.
3.
Sanchez-Palencia
,
E.
, 1978,
Non-Homogeneous Media and Vibration Theory
(
Lecture Notes in Physics
, 127),
Springer Verlag
,
New York
.
4.
Suquet
,
P.
, 1982, “
Plasticité et homogénéisation
,” Ph.D. thesis, Université Pierre et Marie Curie Paris VI.
5.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials: A Survey
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
481
505
.
6.
Suquet
,
P.
, 1987, “
Elements of Homogenization for Inelastic Solid Mechanics, Homogenization Techniques for Composite Media
,”
Lect. Notes Phys.
0075-8450,
272
, pp.
193
198
.
7.
Avellaneda
,
M.
, 1987, “
Optimal Bounds and Microgeometries for Elastic Two-Phase Composites
,”
SIAM J. Appl. Math.
0036-1399,
47
(
6
), pp.
1216
1228
.
8.
Avellaneda
,
M.
, and
Milton
,
G.
, 1989, “
Bounds on the Effective Elasticity Tensor of Composites Based on Two Point Correlations
,”
Composite Material Technology
,
D.
Hui
and
T.
Kozic
, eds.,
American Society of Mechanical Engineers, Petroleum Division
,
Houston, TX
, pp.
89
93
.
9.
Markov
,
K.
, 2000, “
Elementary Micromechanics of Heterogeneous Media
,”
Heterogeneous Media: Micromechanics Modeling Methods and Simulations
,
K. Z.
Markov
and
L.
Preziozi
, eds.,
Birkhäuser
,
Boston
, pp.
1
162
.
10.
Nemat-Nasser
,
S.
, 1999, “
Averaging Theorems in Finite Deformation Plasticity
,”
Mech. Mater.
0167-6636,
31
, pp.
493
523
.
11.
Kalamkarov
,
A.
,
Andrianov
,
I.
, and
Danishevs’kyy
,
V.
, 2009, “
Asymptotic Homogenization of Composite Materials and Structures
,”
Appl. Mech. Rev.
0003-6900,
62
, p.
030802
.
12.
Pindera
,
M.
,
Khatam
,
H.
,
Drago
,
S.
, and
Bansal
,
Y.
, 2009, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Composites, Part B
1359-8368,
40
, pp.
349
378
.
13.
Sun
,
X.
,
Choi
,
K.
,
Liu
,
W.
, and
Khaleel
,
M.
, 2009, “
Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization
,”
Int. J. Plast.
0749-6419,
25
(
10
), pp.
1888
1909
.
14.
Lions
,
J. -L.
, 1969,
Quelques méthodes de résolution des problémes aux limites nonlinéaires
,
Dunod
,
Paris
.
15.
Duvaut
,
G.
, and
Lions
,
J. -L.
, 1972,
Les Inequations en Mecanique et en Physique
,
Dunod
,
Paris
.
16.
Duvaut
,
G.
, 1976,
Analyse fonctionnelle et mecanique des milieux continus. Applications a l’ etude des materiaux composites elastiques a structure periodique—Homogeneisation, Theoretical and Applied Mechanics
,
W. T.
Koiter
, ed.,
North-Holland
,
Amsterdam
, pp.
119
132
.
17.
Babuska
,
I.
, 1976, “
Homogenization and Its Application, Mathematical and Computational Problems
,”
Proceedings of the Third Symposium on Numerical Solution of Partial Differential Equations III, (SYNSPADE)
, pp.
89
116
.
18.
Babuska
,
I.
, 1976, “
Homogenization Approach in Engineering
,”
Computing Methods in Applied Sciences and Engineering
(
Lecture Notes in Economics and Mathematical Systems
, 134),
Springer-Verlag
,
New York
, pp.
137
153
.
19.
Bensoussan
,
A.
,
Lions
,
J. -L.
, and
Papanicolaou
,
G.
, 1978,
Asymptotic Methods for Periodic Structures
,
North-Holland
,
Amsterdam
.
20.
Tartar
,
L.
, 1977, “
Homogénéisation et compacité par compensation
,” Cours Peccot, Collège de France.
21.
Murat
,
F.
, 1997, “
H-Convergence, in Topics in the Mathematical Modelling of Composite Materials
,”
Progress in Nonlinear Differential Equations and Their Applications
,
A.
Cherkaev
and
R. V.
Kohn
, eds.,
Birkhäuser
,
Boston
, pp.
21
43
.
22.
Ball
,
J.
, 1976, “
Convexity Conditions and Existence Theorems in Non-Linear Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
63
, pp.
337
403
.
23.
Tartar
,
L.
, 1983, “
Etude des oscillations dans les equations aux derivees partielles non-lineaires
,”
Lect. Notes Phys.
0075-8450,
195
, pp.
385
412
.
24.
Suquet
,
P.
, 1983, “
Limit Analysis and Homogenization
,”
C. R. Seances Acad. Sci., Ser. 2
0750-7623,
296
, pp.
1335
1358
.
25.
Francfort
,
G.
, 1983, “
Homogenization and Linear Thermoelasticity
,”
SIAM J. Math. Anal.
0036-1410,
14
(
4
), pp.
696
708
.
26.
Francfort
,
G.
,
Leguillon
,
D.
, and
Suquet
,
P.
, 1983, “
Homogenization for Linearly Viscoelastic Bodies
,”
C. R. Seances Acad. Sci., Ser. 2
0750-7623,
I 296
, pp.
287
290
.
27.
Francfort
,
G.
, and
Murat
,
F.
, 1986, “
Homogenization and Optimal Bounds in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
94
, pp.
307
334
.
28.
Francfort
,
G.
, and
Suquet
,
P.
, 1986, “
Homogenization and Mechanical Dissipation in Thermoviscoelasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
96
(
3
), pp.
265
293
.
29.
Hill
,
R.
, 1965, “
Continuum Micro-Mechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
89
101
.
30.
Hill
,
R.
, 1967, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
15
, pp.
79
95
.
31.
Zaoui
,
A.
, 2002, “
Continuum Micromechanics: Survey
,”
J. Eng. Mech.
0733-9399,
128
(
8
), pp.
808
816
.
32.
Geymonat
,
G.
,
Muller
,
S.
, and
Triantafyllidis
,
N.
, 1993, “
Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,”
Arch. Ration. Mech. Anal.
0003-9527,
122
, pp.
231
290
.
33.
Tartar
,
L.
, 1990, “
Memory Effects and Homogenization
,”
Arch. Ration. Mech. Anal.
0003-9527,
111
(
2
), pp.
121
133
.
34.
Ponte Castañeda
,
P.
, 1991, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
0022-5096,
39
(
1
), pp.
45
71
.
35.
Suquet
,
P.
, 1993, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
0022-5096,
41
(
6
), pp.
981
1002
.
36.
Tartar
,
L.
, 1995, “
Beyond Young Measures
,”
Meccanica
0025-6455,
30
, pp.
505
526
.
37.
Ponte-Castaneda
,
P.
, and
Suquet
,
P.
, 1995, “
On the Effective Mechanical Behavior of Weakly Inhomogeneous Nonlinear Composites
,”
Eur. J. Mech. A/Solids
0997-7538,
14
(
2
), pp.
205
236
.
38.
Ponte Castañeda
,
P.
, 1996, “
Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
44
(
6
), pp.
827
862
.
39.
Francfort
,
G.
,
Nguyen
,
Q.
, and
Suquet
,
P.
, 1983, “
Thermodynamics and the Homogenized Thermomechanical Behavior
,”
C. R. Seances Acad. Sci., Ser. 2
0750-7623,
296
, pp.
1007
1010
.
40.
Bakhalov
,
N.
, and
Panasenko
,
G.
, 1989,
Homogenisation: Averaging Processes in Periodic Media
,
Kluwer Academic
,
Dordrecht
.
41.
Charalambakis
,
N.
, and
Murat
,
F.
, 1989, “
Weak Solutions to Initial-Boundary Value Problems for the Shearing of Nonhomogeneous Thermoviscoplastic Materials
,”
Proc. R. Soc. Edinburgh
0370-1646,
113A
, pp.
257
265
.
42.
Allaire
,
G.
, 1992, “
Homogenization and Two-Scale Convergence
,”
SIAM J. Math. Anal.
0036-1410,
23
, pp.
1482
1518
.
43.
Maugin
,
G.
, 1992,
The Thermomechanics of Plasticity and Fracture
,
Cambridge University Press
,
Cambridge
.
44.
Boyd
,
J.
, and
Lagoudas
,
D.
, 1996, “
A Thermodynamical Constitutive Model for Shape-Memory Materials. Part II. The SMA Composite Material
,”
Int. J. Plast.
0749-6419,
12
(
6
), pp.
805
842
.
45.
Allaire
,
G.
,
Bonnetier
,
E.
,
Francfort
,
G.
, and
Jouve
,
F.
, 1997, “
Shape Optimization by the Homogenization Method
,”
Numer. Math.
0029-599X,
76
, pp.
27
68
.
46.
Cherkaev
,
A.
, and
Kohn
,
R.
, 1997,
Topics in the Mathematical Modelling of Composite Materials
,
Birkhauser
,
Boston
.
47.
Kalamkarov
,
A.
, and
Kolpakov
,
A.
, 1997,
Analysis, Design and Optimization of Composite Structures
,
Wiley
,
New York
.
48.
Forest
,
S.
, and
Sab
,
K.
, 1998, “
Cosserat Overall Modeling of Heterogeneous Materials
,”
Mech. Res. Commun.
0093-6413,
25
(
4
), pp.
449
454
.
49.
Aboudi
,
J.
,
Pindera
,
M.
, and
Arnold
,
S.
, 1999, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
1359-8368,
30
, pp.
777
832
.
50.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
, 2001, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2335
2385
.
51.
Eringen
,
C.
, 2002,
Nonlocal Continuum Field Theories
,
Springer-Verlag
,
New York
.
52.
Milton
,
G.
, 2002,
The Theory of Composites
,
Cambridge University Press
,
Cambridge
.
53.
Bansal
,
Y.
, and
Pindera
,
M.
, 2003, “
Efficient Reformulation of the Thermoelastic Higher-Order Theory for Functionally Graded Materials
,”
J. Therm. Stresses
0149-5739,
26
, pp.
1055
1092
.
54.
Michel
,
J.
, and
Suquet
,
P.
, 2004, “
Computational Analysis of Nonlinear Composites Structures Using the Nonuniform Transformation Field Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
5477
5502
.
55.
Alshits
,
V.
, and
Maugin
,
G.
, 2005, “
Dynamics of Multilayers: Elastic Waves in an Anisotropic Graded or Stratified Plate
,”
Wave Motion
0165-2125,
41
, pp.
357
394
.
56.
Bansal
,
Y.
, and
Pindera
,
M.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
177
195
.
57.
Guinovart-Díaz
,
R.
,
Rodriguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
, and
Maugin
,
G.
, 2005, “
A Recursive Asymptotic Homogenization Scheme for Multi-Phase Fiber-Reinforced Composites
,”
Mech. Mater.
0167-6636,
37
, pp.
1119
1131
.
58.
Suquet
,
P.
, 2005, “
On the Effect of Small Fluctuations in the Volume Fraction of Constituents on the Effective Properties of Composites
,”
Comptes-Rendus de l’Académie des Sciences de Paris, Mécanique
,
333
, pp.
219
266
.
59.
Chen
,
L.
,
Urquhart
,
E.
, and
Pindera
,
M. -J.
, 2005, “
Microstructural Effects in Multilayers With Large Moduli Contrast Loaded by Flat Punch
,”
AIAA J.
0001-1452,
43
(
5
), pp.
962
973
.
60.
Idiart
,
M.
,
Moulinec
,
H.
,
Ponte-Castaneda
,
P.
, and
Suquet
,
P.
, 2006, “
Macroscopic Behavior and Field Fluctuations in Viscoplastic Composites: Second-Order Estimates Versus Full-Field Simulations
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
1029
1063
.
61.
Cavalcante
,
M.
,
Marques
,
S.
, and
Pindera
,
M.
, 2008, “
Computational Aspects of the Parametric Finite-Volume Theory for Functionally Graded Materials
,”
Comput. Mater. Sci.
0927-0256,
44
, pp.
422
438
.
62.
Stefanou
,
I.
,
Sulem
,
J.
, and
Vardoulakis
,
I.
, 2008, “
Three-Dimensional Cosserat Homogenization of Masonry Structures: Elasticity
,”
Acta Geotechnica
1861-1125,
3
(
1
), pp.
71
83
.
63.
Chatzigeorgiou
,
G.
,
Charalambakis
,
N.
, and
Murat
,
F.
, 2008, “
Homogenization Problems of a Hollow Cylinder Made of Elastic Materials With Discontinuous Properties
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
5165
5180
.
64.
Visintin
,
A.
, 2008, “
Homogenization of Nonlinear Visco-Elastic Composites
,”
J. Math. Pures Appl.
0021-7824,
89
, pp.
477
504
.
65.
Dascalu
,
C.
,
Bilbie
,
G.
, and
Agiasofitou
,
E.
, 2008, “
Damage and Size Effects in Elastic Solids: A Homogenization Approach
,”
Int. J. Solids Struct.
0020-7683,
45
(
2
), pp.
409
430
.
66.
Chatzigeorgiou
,
G.
,
Charalambakis
,
N.
, and
Murat
,
F.
, 2009, “
Homogenization of a Pressurized Tube Made of Elastoplastic Materials With Discontinuous Properties
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
3902
3913
.
67.
Nie
,
G.
, and
Batra
,
R.
, 2010, “
Material Tailoring and Analysis of Functionally Graded Isotropic and Incompressible Linear Elastic Hollow Cylinders
,”
Compos. Struct.
0263-8223,
92
(
2
), pp.
265
274
.
68.
Tsukrov
,
I.
, and
Trach
,
B.
, 2010, “
Elastic Deformation of Composite Cylinders With Cylindrically Orthotropic Layers
,”
Int. J. Solids Struct.
0020-7683,
47
(
1
), pp.
25
33
.
69.
Nie
,
G.
, and
Batra
,
R.
, 2010, “
Exact Solutions and Material Tailoring for Functionally Graded Hollow Circular Cylinders
,”
J. Elast.
0374-3535,
99
(
2
), pp.
179
201
.
70.
van der Sluis
,
O.
,
Schreurs
,
P.
, and
Meijer
,
H.
, 1999, “
Effective Properties of a Viscoplastic Constitutive Model Obtained by Homogenisation
,”
Mech. Mater.
0167-6636,
31
, pp.
743
759
.
71.
Love
,
B.
, and
Batra
,
R.
, 2006, “
Determination of Effective Thermomechanical Parameters of a Mixture of Two Elastothermoviscoplastic Constituents
,”
Int. J. Plast.
0749-6419,
22
, pp.
1026
1061
.
72.
Chatzigeorgiou
,
G.
, and
Lagoudas
,
D.
, 2009, “
A Constitutive Model for High Temperature SMA’s Exhibiting Viscoplastic Behavior
,”
Behavior and Mechanics of Multifunctional Materials and Composites
,
Proc. SPIE
, Vol.
7289
.
Z.
Ounaies
and
J.
Li
, eds.,
The International Society for Optical Engineering
,
San Diego
.
73.
Lagoudas
,
D.
,
Chatzigeorgiou
,
G.
, and
Kumar
,
P.
, 2009, “
Modelling and Experimental Study of Simultaneous Creep and Transformation in Polycrystalline High-Temperature Shape Memory Alloys
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
(
18
), pp.
2257
2267
.
74.
Allaire
,
G.
,
Jouve
,
F.
, and
Maillot
,
H.
, 2004, “
Topology Optimization for Minimum Stress Design With the Homogenization Method
,”
Struct. Multidiscip. Optim.
1615-147X,
28
, pp.
87
98
.
75.
Francfort
,
G.
, and
Murat
,
F.
, 2009, “
The Proofs of the Optimal Bounds for Mixtures of Two Anisotropic Conducting Materials in Two Dimensions
,”
Mech. Mater.
0167-6636,
41
, pp.
448
455
.
76.
Fish
,
J.
,
Sheh
,
K.
,
Pandheeradi
,
M.
, and
Shephard
,
M.
, 1997, “
Computational Plasticity for Composite Structures Based on Mathematical Homogenization: Theory and Practice
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
148
, pp.
53
73
.
77.
Moulinec
,
H.
, and
Suquet
,
P.
, 2003, “
Intraphase Strain Heterogeneity in Nonlinear Composites: A Computational Approach
,”
Eur. J. Mech. A/Solids
0997-7538,
22
(
5
), pp.
751
770
.
78.
Ghosh
,
S.
,
Lee
,
K.
, and
Moorthy
,
S.
, 1995, “
Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
27
62
.
79.
Shehadeh
,
M.
,
Zbib
,
H.
, and
de la Rubia
,
T.
, 2005, “
Multiscale Dislocation Dynamics Simulations
,”
Int. J. Plast.
0749-6419,
21
, pp.
2369
2390
.
80.
Kim
,
J.
, 1996, “
Dynamic Self-Consistent Analysis for Elastic Wave Propagation in Fiber Reinforced Composites
,”
J. Acoust. Soc. Am.
0001-4966,
100
, pp.
2002
2010
.
81.
Mühlhaus
,
H. -B.
,
Sulem
,
J.
, and
Unterreiner
,
P.
, 1997, “
Discrete and Continuous Models for Dry Masonry Columns
,”
J. Eng. Mech.
0733-9399,
123
(
4
), pp.
399
403
.
82.
Forest
,
S.
, 1998, “
Mechanics of Generalized Continua: Construction by Homogenization
,”
J. Phys. IV
1155-4339,
8
, pp.
Pr4
-39–Pr4-
48
.
83.
Tsinopoulos
,
S.
,
Verbis
,
J.
, and
Polyzos
,
D.
, 2000, “
An Iterative Effective Medium Approximation for Wave Dispersion and Attenuation Predictions in Pariculate Composites
,”
Adv. Compos. Lett.
0963-6935,
9
, pp.
193
200
.
84.
Verbis
,
J.
,
Kattis
,
S.
,
Tsinopoulos
,
S.
, and
Polyzos
,
D.
, 2001, “
Wave Dispersion and Attenuation in Fiber Composites
,”
Comput. Mech.
0178-7675,
27
, pp.
244
252
.
85.
Verbis
,
J.
,
Tsinopoulos
,
S.
, and
Polyzos
,
D.
, 2003, “
Elastic Wave Propagation in Fiber Reinforced Composite Materials With Non-Uniform Distribution of Fibers
,”
Comput. Model. Eng. Sci.
1526-1492,
3
(
6
), pp.
803
814
.
86.
Aggelis
,
D.
,
Tsinopoulos
,
S.
, and
Polyzos
,
D.
, 2004, “
An Iterative Effective Medium Approximation (IEMA) for Wave Dispersion and Attenuation Predictions in Particulate Composites, Suspensions and Emulsions
,”
J. Acoust. Soc. Am.
0001-4966,
116
, pp.
3443
3452
.
87.
Mazur-Sniady
,
K.
,
Wozniak
,
C.
, and
Wierzbicki
,
E.
, 2004, “
On the Modelling of the Dynamic Problems for Plates With a Periodic Structure
,”
Arch. Appl. Mech.
0939-1533,
74
, pp.
179
190
.
88.
Smyshlyaev
,
V.
, 2009, “
Propagation and Localization of Elastic Waves in Highly Anisotropic Periodic Composites via Two-Scale Homogenization
,”
Mech. Mater.
0167-6636,
41
, pp.
434
447
.
89.
Cosserat
,
E.
, and
Cosserat
,
F.
, 1909,
Theories des corps deformables
,
Hermann
,
Paris
.
90.
Mindlin
,
R.
, 1964, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
16
, pp.
51
78
.
91.
Eringen
,
A.
, 1966, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
0095-9057,
15
, pp.
909
923
.
92.
Pasternak
,
E.
, and
Muhlhaus
,
H. -B.
, 2005, “
Generalised Homogenization Procedures for Granular Materials
,”
J. Eng. Math.
0022-0833,
52
(
1
), pp.
199
229
.
93.
Georgiadis
,
H.
,
Vardoulakis
,
I.
, and
Lykotrafitis
,
G.
, 2000, “
Torsional Surface Waves in a Gradient-Elastic Half-Space
,”
Wave Motion
0165-2125,
31
, pp.
333
348
.
94.
Georgiadis
,
H.
, and
Lykotrafitis
,
G.
, 2001, “
A Method Based on the Radon Transform for Three Dimensional Elastodynamics Problems of Moving Sources Over a Half-Space
,”
J. Elast.
0374-3535,
65
, pp.
87
129
.
95.
Georgiadis
,
H.
,
Vardoulakis
,
I.
, and
Velgaki
,
E.
, 2004, “
Dispersive Rayleigh-Wave Propagation in Microstructured Solids Characterized by Dipolar Gradient Elasticity
,”
J. Elast.
0374-3535,
74
, pp.
17
45
.
96.
Eftaxiopoulos
,
D.
, and
Atkinson
,
C.
, 2005, “
A Nonlinear, Anisotropic and Axisymmetric Model for Balloon Angioplasty
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
1097
1128
.
97.
Doyle
,
T.
,
Tew
,
A.
,
Warnick
,
K.
, and
Carruth
,
B.
, 2009, “
Simulation of Elastic Wave Scattering in Cells and Tissues at the Microscopic Level
,”
J. Acoust. Soc. Am.
0001-4966,
125
(
3
), pp.
1751
1767
.
98.
Borcea
,
L.
,
Papanicolaou
,
G.
,
Tsogka
,
C.
, and
Berryman
,
J.
, 2002, “
Imaging and Time Reversal in Random Media
,”
Inverse Probl.
0266-5611,
18
, pp.
1247
1279
.
99.
Hwang
,
H.
, and
Tzavaras
,
A.
, 2002, “
Kinetic Decomposition of Approximate Solutions to Scalar Conservation Laws and Applications to Relaxation and Diffusion-Dispersion Approximations
,”
Commun. Partial Differ. Equ.
0360-5302,
27
, pp.
1229
1254
.
100.
Jabin
,
P.
, and
Tzavaras
,
A.
, 2009, “
Kinetic Decomposition for Periodic Homogenization Problems
,”
SIAM J. Math. Anal.
0036-1410,
41
, pp.
360
390
.
101.
Tzavaras
,
A.
, 2009, “
Kinetic Techniques for Homogenization Problems
,” private communication.
102.
Tartar
,
L.
, 2000, “
Mathematical Tools for Studying Oscillations and Concentrations: From Young Measures to H-Measures and Their Variants
,”
Multiscale Problems in Science and Technology
,
N.
Antonic
,
C. J.
van Duijn
,
W.
Jager
, and
A.
Mikelic
, eds.,
Springer
,
New York
, pp.
1
84
.
103.
Bhattacharya
,
K.
, 2003,
Microstructure of Martensite. Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford Series on Material Modelling
,
Oxford University Press
.
104.
Brezis
,
H.
, 1983,
Analyse Fonctionnelle
,
Masson
,
Paris
.
105.
Tartar
,
L.
, 1978, “
Quelques remarques sur l’ homogeneisation
,”
Functional Analysis and Numerical Analysis
,
H.
Fujita
, ed.,
Japan Society for the Promotion of Sciences
,
Tokyo
, pp.
469
481
.
106.
Murat
,
F.
, 1978, “
Compacite par compensation
,”
Annali Scuola Normale Superiore-Pisa, Classe di Scienze, Serie IV
,
5
(
3
), pp.
489
507
.
107.
Ponte-Castaneda
,
P.
, and
Willis
,
J.
, 1988, “
On the Overall Properties of Nonlinearly Viscous Composites
,”
Proc. R. Soc. London, Ser. A
0950-1207,
416
, pp.
217
244
.
108.
Grabovsky
,
Y.
, and
Kohn
,
R.
, 1995, “
Microstructures Minimizing the Energy of a Two Phase Elastic Composite in Two Space Dimensions. I. The Confocal Ellipse Construction
,”
J. Mech. Phys. Solids
0022-5096,
43
(
6
), pp.
933
947
.
109.
Grabovsky
,
Y.
, and
Milton
,
G.
, 1998, “
“Exact relations for composites: Towards a Complete Solution
,”
Documenta Mathematica, Journal der Deutschen Mathematiker-Vereinigung
, Extra Volume ICM III, pp.
623
632
.
110.
Ponte Castañeda
,
P.
, and
Suquet
,
P.
, 1997, “
Nonlinear Composites
,”
Adv. Appl. Mech.
0065-2156,
34
, pp.
171
302
.
111.
Nemat-Nasser
,
S.
, and
Hori
,
S.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam
.
112.
Lukkassen
,
D.
, and
Milton
,
G.
, 2000, “
On Hierarchical Structures and Reiterated Homogenization. Function Spaces, Interpolation Theory and Related Topics
,”
Proceedings of the International Conference in Honour of Jaak Peetre on his 65th Birthday
, Lund, Sweden, pp.
355
368
.
113.
Grabovsky
,
Y.
,
Milton
,
G.
, and
Sage
,
D.
, 2000, “
Exact Relations for Effective Tensors of Composites: Necessary Conditions and Sufficient Conditions
,”
Commun. Pure Appl. Math.
0010-3640,
53
(
3
), pp.
300
353
.
114.
Charalambakis
,
N.
, and
Murat
,
F.
, 2006, “
Homogenization of Stratified Thermoviscoplastic Materials
,”
Q. Appl. Math.
0033-569X,
64
(
2
), pp.
359
399
.
115.
Charalambakis
,
N.
, and
Murat
,
F.
, “
Stability by Homogenization of Thermoviscoplastic Problems
,”
Mathematical Models and Methods in Applied Sciences
, in press.
116.
Cherkaev
,
E.
, 2001, “
Inverse Homogenization for Evaluation of Effective Properties of a Mixture
,”
Inverse Probl.
0266-5611,
17
, pp.
1203
1218
.
117.
Bendsøe
,
M.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
118.
Guedes
,
J.
, and
Kikuchi
,
N.
, 1990, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
83
, pp.
143
198
.
119.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
318
.
120.
Nishiwaki
,
S.
,
Frecker
,
M.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
535
559
.
121.
Sigmund
,
O.
, and
Torquato
,
S.
, 1999, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
365
379
.
122.
Allaire
,
G.
, 2002,
Shape Optimization by the Homogenization Method
(
Springer Series on Applied Mathematical Sciences
, 146),
Springer-Verlag
,
New York
.
123.
Cavalcante
,
M.
,
Marques
,
S.
, and
Pindera
,
M.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials-Part I: Analysis
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
935
945
.
124.
Khatam
,
H.
, and
Pindera
,
M.
, 2009, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plast.
0749-6419,
25
(
7
), pp.
1386
1411
.
125.
Chen
,
W.
, and
Fish
,
J.
, 2001, “
A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
153
161
.
126.
Fang
,
X.
,
Wang
,
D.
, and
Liu
,
J.
, 2009, “
Multiple Scattering of Elastic Waves in Metal-Matrix Composite Materials With High Volume Concentration of Particles
,”
Eur. J. Mech. A/Solids
0997-7538,
28
, pp.
377
386
.
127.
Parnell
,
W.
, and
Abrahams
,
I.
, 2008, “
Homogenization for Wave Propagation in Periodic Fiber-Reinforced Media With Complex Microstructure. I-Theory
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2521
2540
.
128.
Peerlings
,
R.
, and
Fleck
,
N.
, 2004, “
Computational Evaluation of Strain Gradient Elasticity Constants
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
2
(
4
), pp.
599
619
.
129.
Smyshlyaev
,
V.
, and
Cherednichenko
,
K.
, 2000, “
On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
1325
1357
.
130.
Smyshlyaev
,
V.
, and
Fleck
,
N.
, 1994, “
Bounds and Estimates for Linear Composites With Strain Gradient Effects
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1851
1882
.
131.
Polyzos
,
D.
,
Tsepoura
,
K.
, and
Beskos
,
D.
, 2003, “
BEM Solutions of Frequency Domain Gradient Elastodynamic 3-D Problems
,”
Electronic Journal of Boundary Elements
,
1
(
2
), pp.
174
200
.
132.
Polyzos
,
D.
,
Tsepoura
,
K.
,
Tsinopoulos
,
S.
, and
Beskos
,
D.
, 2003, “
A Boundary Element Method for Solving 2d and 3d Static Gradient Elastic Problems. Part 1: Integral Formulation
,”
Electronic Journal of Boundary Elements
,
192
, pp.
2845
2873
.
133.
Polyzos
,
D.
, 2005, “
A Boundary Element Formulation for Solving Dipolar Gradient Elastic Problems
,”
Comput. Mech.
0178-7675,
35
, pp.
292
304
.
134.
Yang
,
R.
, and
Mal
,
A.
, 1994, “
Multiple Scattering of Elastic Waves in a Fiber-Reinforced Composite
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1945
1968
.
135.
Germain
,
P.
, 1973, “
The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure
,”
SIAM J. Appl. Math.
0036-1399,
25
, pp.
556
575
.
136.
Mindlin
,
R.
, 1965, “
Second Gradient of Strain And Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
0020-7683,
1
, pp.
417
438
.
137.
Gourgiotis
,
P.
, and
Georgiadis
,
H.
, 2008, “
An Approach Based on Distributed Dislocations and Disclinations for Crack Problems in Couple-Stress Elasticity
,”
Int. J. Solids Struct.
0020-7683,
45
(
21
), pp.
5521
5539
.
138.
Georgiadis
,
H.
, and
Velgaki
,
E.
, 2003, “
High-Frequency Rayleigh Waves in Materials With Microstructure and Couple Stress-Effects
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2501
2520
.
139.
Suiker
,
A.
,
Chang
,
C.
,
Borst
,
R. D.
, and
Esveld
,
C.
, 1999, “
Surface Waves in A Stratified Half Space With Enhanced Continuum Properties. Part 1: Formulation of the Boundary Value Problem
,”
Eur. J. Mech. A/Solids
0997-7538,
18
, pp.
749
768
.
140.
Buechner
,
P.
, and
Lakes
,
R.
, 2003, “
Size Effects in the Elasticity and Viscoelasticity of Bone
,”
Biomech. Model. Mechanobiol.
1617-7959,
1
, pp.
295
301
.
141.
Bigoni
,
D.
, and
Drugan
,
W.
, 2007, “
Analytical Derivation of Cosserat Moduli via Homogenization of Heterogeneous Elastic Materials
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
741
753
.
142.
Parks
,
H.
, and
Lakes
,
R.
, 1986, “
Cosserat Micromechanics of Human Bone: Strain Redistribution by a Hydrationsensitive Constituent
,”
J. Biomech.
0021-9290,
19
, pp.
385
397
.
143.
Forest
,
S.
,
Pradel
,
F.
, and
Sab
,
K.
, 2001, “
Asymptotic Analysis of Heterogeneous Cosserat Media
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4585
4608
.
144.
Sulem
,
J.
, and
Muhlhaus
,
H. -B.
, 1997, “
A Continuum Model for Periodic Two-Dimensional Block Structures
,”
Mech. Cohesive-Frict. Mater.
1082-5010,
2
, pp.
31
46
.
145.
Cerrolaza
,
M.
,
Sulem
,
J.
, and
Elbied
,
A.
, 1999, “
A Cosserat Non-Linear Finite Element Analysis Software for Blocky Structures
,”
Adv. Eng. Software
0965-9978,
30
, pp.
69
83
.
146.
Stefanou
,
I.
,
Sulem
,
J.
, and
Vardoulakis
,
I.
, 2009, “
Micromorphic Continuum: Application to Interlocking Masonry Structures
,” unpublished.
147.
Tsogka
,
C.
, and
Papanicolaou
,
G.
, 2002, “
Time Reversal Through a Solid-Liquid Interface and Super-Resolution
,”
Inverse Probl.
0266-5611,
18
, pp.
1639
1657
.
148.
Borcea
,
L.
,
Papanicolaou
,
G.
, and
Tsogka
,
C.
, 2003, “
A Resolution Study for Imaging and Time Reversal in Random Media
,”
Contemp. Math.
0271-4132,
333
, pp.
63
77
.
149.
Berryman
,
J.
,
Borcea
,
L.
,
Papanicolaou
,
G.
, and
Tsogka
,
C.
, 2004, “
Statistical Stability and Time-Reversal Imaging in Random Materials, Geometric Methods in Inverse Problems and PDE Control
,”
IMA Vol. Math. Appl.
,
137
,
Springer
, New York, pp.
15
24
.
150.
Borcea
,
L.
,
Papanicolaou
,
G.
, and
Tsogka
,
C.
, 2005, “
Interferometric Array Imaging in Clutter
,”
Inverse Probl.
0266-5611,
21
, pp.
1419
1460
.
151.
Borcea
,
L.
,
Papanicolaou
,
G.
, and
Tsogka
,
C.
, 2006, “
Coherent Interferometric Imaging in Clutter
,”
Geophysics
0016-8033,
71
, pp.
165
175
.
152.
Borcea
,
L.
,
Papanicolaou
,
G.
, and
Tsogka
,
C.
, 2006, “
Adaptive Interferometric Imaging in Clutter and Optimal Illumination
,”
Inverse Probl.
0266-5611,
22
, pp.
1405
1436
.
153.
Zaslavsky
,
G.
, 2002, “
Chaos, Fractional Kinetics, and Anomalous Transport
,”
Phys. Rep.
0370-1573,
371
(
6
), pp.
461
580
.
154.
Filippas
,
S.
, and
Makrakis
,
G.
, 2003, “
Semiclassical Wigner Function and Geometrical Optics
,”
Multiscale Model. Simul.
1540-3459,
1
(
4
), pp.
674
714
.
155.
Groby
,
J.
,
Tsogka
,
C.
, and
Wirgin
,
A.
, 2005, “
Simulation of seismic Response in a City-Like Environment
,”
Soil. Dyn. Earthquake Eng.
,
25
(
7–10
), pp.
487
504
.
156.
Lions
,
P. -L.
,
Perthame
,
B.
, and
Tadmor
,
E.
, 1994, “
A Kinetic Formulation of Scalar Multidimensional Conservation Laws
,”
J. Am. Math. Soc.
0894-0347,
7
, pp.
169
191
.
157.
Lions
,
P. -L.
,
Perthame
,
B.
, and
Tadmor
,
E.
, 1994, “
Kinetic Formulation of the Isentropic Gas Dynamics and P-Systems
,”
Commun. Math. Phys.
0010-3616,
163
, pp.
415
431
.
158.
Perthame
,
B.
, and
Tzavaras
,
A.
, 2000, “
Kinetic Formulation for Systems of Two Conservation Laws and Elastodynamics
,”
Arch. Ration. Mech. Anal.
0003-9527,
155
, pp.
1
48
.
159.
Hou
,
T.
, 1988, “
Homogenization for Semilinear Hyperbolic Systems With Oscillatory Data
,”
Commun. Pure Appl. Math.
0010-3640,
41
, pp.
471
495
.
160.
E
,
W.
, 1992, “
Homogenization of Linear and Nonlinear Transport Equations
,”
Comm. Pure Appl. Math.
,
45
, pp.
301
326
.
161.
Hou
,
T.
, and
Xin
,
X.
, 1992, “
Homogenization of Linear Transport Equations With Oscillatory Vector Fields
,”
SIAM J. Appl. Math.
0036-1399,
52
, pp.
34
45
.
You do not currently have access to this content.