A summary of recent research in micropositioning and nanopositioning is presented. The work is classified into five groups by actuation approach, including piezoelectric, magnetic, electrostatic, thermal, and electrochemical microactuators. A consistent set of measurable, key characteristics are proposed: degrees of freedom, range, resolution, range-to-resolution ratio, footprint, force, natural frequency, and bandwidth. Values of the key characteristics are listed in tables. The results demonstrate the boundaries of current knowledge and the advantages of each actuation approach. This is the first time this information has been compiled in this growing field and it is summarized in such a way as to be useful to readers. There are 82 references cited in this review article.

1.
Golda
,
D.
, and
Culpepper
,
M. L.
, 2004, “
Small-Scale Micro/Nano-Manipulators in Precision Alignment and Positioning
,”
Proc. Am. Soc. Precis Eng.
, Orlando, FL, Oct., pp.
297
299
.
2.
Slocum
,
A. H.
, 1992,
Precision Machine Design
,
Society of Manufacturing Engineers
, Dearborn, MI.
3.
Cheung
,
P.
,
Horowitz
,
R.
, and
Howe
,
R. T.
, 1996, “
Design, Fabrication, Position Sensing, and Control of an Electrostatically-Driven Polysilicon Microactuator
,”
IEEE Trans. Magn.
0018-9464,
32
(
1
), pp.
122
128
.
4.
Hirano
,
T.
,
Fan
,
L.-S.
,
Gao
,
J. Q.
, and
Lee
,
W. Y.
, 1998, “
MEMS Milliactuator for Hard-Disk-Drive Tracking Servo
,”
J. Microelectromech. Syst.
1057-7157,
7
(
2
), pp.
149
155
.
5.
Hirano
,
T.
,
Fan
,
L.-S.
,
Lee
,
W. Y.
,
Hong
,
J.
,
Imaino
,
W.
,
Pattanaik
,
S.
,
Chan
,
S.
,
Webb
,
P.
,
Horowitz
,
R.
,
Aggarwal
,
S.
, and
Horsley
,
D. A.
, 1998, “
High-Bandwidth High-Accuracy Rotary Microactuators for Magnetic Hard Disk Drive Tracking Servos
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
3
(
3
), pp.
156
165
.
6.
Hirano
,
T.
,
Fan
,
L.-S.
,
Semba
,
T.
,
Lee
,
W. Y.
,
Hong
,
J.
,
Pattanaik
,
S.
,
Webb
,
P.
,
Juan
,
W.-H.
, and
Chan
,
S.
, 1999, “
High-Bandwidth HDD Tracking Servo by a Moving-Slider Micro-Actuator
,”
IEEE Trans. Magn.
0018-9464,
35
(
5
), pp.
3670
3672
.
7.
Horsley
,
D. A.
,
Wongkomet
,
N.
,
Horowitz
,
R.
, and
Pisano
,
A. P.
, 1999, “
Precision Positioning Using a Microfabricated Electrostatic Actuator
,”
IEEE Trans. Magn.
0018-9464,
35
(
2
), pp.
993
999
.
8.
Imamura
,
T.
,
Katayama
,
M.
,
Ikegawa
,
Y.
,
Ohwe
,
T.
,
Koishi
,
R.
, and
Koshikawa
,
T.
, 1998, “
MEMS-Based Integrated Head/Actuator/Slider for Hard Disk Drives
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
3
(
3
), pp.
166
174
.
9.
Kim
,
B.-H.
, and
Chun
,
K.
, 2001, “
Fabrication of an Electrostatic Track-Following Micro Actuator for Hard Disk Drives Using SOI Wafer
,”
J. Micromech. Microeng.
0960-1317,
11
(
1
), pp.
1
6
.
10.
Soeno
,
Y.
,
Ichikawa
,
S.
,
Tsuna
,
T.
,
Sato
,
Y.
, and
Sato
,
I.
, 1999, “
Piezoelectric Piggy-Back Microactuator for Hard Disk Drive
,”
IEEE Trans. Magn.
0018-9464,
35
(
2
), pp.
983
987
.
11.
Toshiyoshi
,
H.
,
Mita
,
M.
, and
Fujita
,
H.
, 2002, “
A MEMS Piggyback Actuator for Hard-Disk Drives
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
648
654
.
12.
Wang
,
Z. H.
,
Zhu
,
W. G.
, and
Yao
,
X.
, 2002, “
d(31) Type Inplane Bending Multilayer Piezoelectric Microactuators—A Design Concept and Its Applications
,”
Sens. Actuators, A
0924-4247,
A101
(
3
), pp.
262
268
.
13.
Cusin
,
P.
,
Sawai
,
T.
, and
Konishi
,
S.
, 2000, “
Compact and Precise Positioner Based on the Inchworm Principle
,”
J. Micromech. Microeng.
0960-1317,
10
(
4
), pp.
516
521
.
14.
Gao
,
P.
,
Tan
,
H.
, and
Yuan
,
Z. J.
, 2000, “
The Design and Characterization of Piezo-Driven UltraPrecision Stepping Positioner
,”
Meas. Sci. Technol.
0957-0233,
11
(
2
) pp.
N15
N19
.
15.
Ku
,
S.-S.
,
Pinsopon
,
U.
,
Cetinkunt
,
S.
, and
Nakajima
,
S.
, 2000, “
Design, Fabrication, and Real-Time Neural Network Control of a Three-Degrees-of-Freedom Nanopositioner
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
3
), pp.
273
280
.
16.
Gao
,
P.
, and
Swei
,
S.-M.
, 1999, “
A Six-Degree-of-Freedom Micro-Manipulator Based on Piezoelectric Translators
,”
Nanotechnology
0957-4484,
10
(
4
), pp.
447
452
.
17.
Jonsmann
,
J.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1999, “
Compliant Electro-Thermal Microactuators
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
588
593
.
18.
Jung
,
K. S.
, and
Baek
,
Y. S.
, 2002, “
Contact-Free Moving-Magnet Type of Micropositioner With Optimized Specification
,”
IEEE Trans. Magn.
0018-9464,
38
(
3
), pp.
1539
1548
.
19.
Kwon
,
H. N.
, and
Lee
,
J. H.
, 2002, “
Characterization of a Micromachined Inchworm Motor With Thermoelastic Linkage Actuators
,
Proc. IEEE Micro Electro Mech. Syst.
, pp.
586
589
.
20.
Liu
,
Y.-T.
, and
Higuchi
,
T.
, 2001, “
Precision Positioning Device Utilizing Impact Force of Combined Piezo-Pneumatic Actuator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
6
(
4
), pp.
467
473
.
21.
Sun
,
Y.
,
Piyabongkarn
,
D.
,
Sezen
,
A.
,
Nelson
,
B. J.
, and
Rajamani
,
R.
, 2002, “
A High-Aspect-Ratio Two-Axis Electrostatic Microactuator With Extended Travel Range
,”
Sens. Actuators, A
0924-4247,
A102
(
1–2
), pp.
49
60
.
22.
Chang
,
S. H.
,
Tseng
,
C. K.
, and
Chien
,
H. C.
, 1999, “
An Ultra-Precision XYθz Piezo-Micropositioner Part I: Design and Analysis
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
(
4
), pp.
897
905
.
23.
Chang
,
S. H.
,
Tseng
,
C. K.
, and
Chien
,
H. C.
, 1999, “
An Ultra-Precision XYθz Piezo-Micropositioner Part II: Experiment and Performance
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
46
(
4
), pp.
906
912
.
24.
Lee
,
C.-W.
, and
Kim
,
S.-W.
, 1997, “
An Ultraprecision Stage for Alignment of Wafers in Advanced Microlithography
,”
Precis. Eng.
0141-6359,
21
(
2–3
), pp.
113
122
.
25.
Liu
,
H. Z.
,
Lu
,
B. H.
,
Ding
,
Y. C.
,
Tang
,
Y. P.
, and
Li
,
D. C.
, 2003, “
A Motor-Piezo Actuator for Nano-Scale Positioning Based on Dual Servo Loop and Nonlinearity Compensation
,”
J. Micromech. Microeng.
0960-1317,
13
(
2
), pp.
295
299
.
26.
Mohamed
,
A. M.
,
Vestgaard
,
B.
, and
Busch-Vishniac
,
I.
, 1994, “
Real Time Implementation of a Robust H∞ Controller for a 2-DOF Magnetic Micro-Levitation Positioner
,”
Proc. Am. Control. Conf.
, Vol.
3
, pp.
3219
3223
.
27.
Pahk
,
H. J.
,
Lee
,
D. S.
, and
Park
,
J. H.
, 2001, “
Ultra Precision Positioning System for Servo Motor-Piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
1
), pp.
51
63
.
28.
Yang
,
R.
,
Jouaneh
,
M.
, and
Schweizer
,
R.
, 1996, “
Design and Characterization of a Low-Profile Micropositioning Stage
,”
Precis. Eng.
0141-6359,
18
(
1
), pp.
20
29
.
29.
Ni
,
J.
, and
Zhu
,
Z.
, 2000, “
Design of a Linear Piezomotor With Ultra-High Stiffness and Nanoprecision
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
4
), pp.
441
443
.
30.
Zhang
,
B.
, and
Zhu
,
Z.
, 1997, “
Developing a Linear Piezomotor With Nanometer Resolution and High Stiffness
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
2
(
1
), pp.
22
29
.
31.
Chang
,
S. H.
, and
Du
,
B. C.
, 1998, “
A Precision Piezodriven Micropositioner Mechanism With Large Travel Range
,”
Rev. Sci. Instrum.
0034-6748,
69
(
4
), pp.
1785
1791
.
32.
Scire
,
F. E.
, and
Teague
,
E. C.
, 1978, “
Piezodriven 50‐μm Range Stage With Subnanometer Resolution
,”
Rev. Sci. Instrum.
0034-6748,
49
(
12
), pp.
1735
1740
.
33.
Jaecklin
,
V. P.
,
Linder
,
C.
,
de Rooij
,
N. F.
, and
Moret
,
J.-M.
, 1993, “
Comb Actuators for XY-Microstages
,”
Sens. Actuators, A
0924-4247,
A39
(
1
),
83
89
.
34.
Chen
,
K. S.
,
Trumper
,
D. L.
, and
Smith
,
S. T.
, 2002, “
Design and Control for an Electromagnetically Driven X‐Y‐θ Stage
,”
Precis. Eng.
0141-6359,
26
(
4
), pp.
355
369
.
35.
Judy
,
J. W.
,
Polla
,
D. L.
, and
Robbins
,
W. P.
, 1990, “
A Linear Piezoelectric Stepper Motor With Submicrometer Step Size and Centimeter Travel Range
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
37
(
5
), pp.
428
437
.
36.
Xu
,
Y.
,
Miller
,
S. A.
, and
MacDonald
,
N. C.
, 1995, “
Microelectromechanical Scanning Tunneling Microscope
,”
Proc. Int. Conf. Solid State Sensors Actuators
, Vol.
1
, pp.
640
643
.
37.
Gao
,
P.
,
Swei
,
S.-M.
, and
Yuan
,
Z.
, 1999, “
A New Piezodriven Precision Micropositioning Stage Utilizing Flexure Hinges
,”
Nanotechnology
0957-4484,
10
(
4
), pp.
394
398
.
38.
Hoen
,
S.
,
Bai
,
Q.
,
Harley
,
J. A.
,
Horsley
,
D. A.
,
Matta
,
F.
,
Verhoeven
,
T.
,
Williams
,
J.
, and
Williams
,
K. R.
, 2003, “
A High-Performance Dipole Surface Drive for Large Travel and Force
,”
Proc. Int. Conf. Solid State Sensors Actuators
, Vol.
1
, pp.
344
347
.
39.
Rothuizen
,
H.
Despont
,
M.
,
Drechsler
,
U.
,
Genolet
,
G.
,
Häberle
,
W.
,
Lutwyche
,
M.
,
Stutz
,
R.
, and
Vettiger
,
P.
, 2002, “
Compact Copper/Epoxy-Based Electromagnetic Scanner for Scanning Probe Applications
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
582
585
.
40.
Smith
,
S. T.
,
Chetwynd
,
D. G.
, and
Harb
,
S.
, 1994, “
A Simple Two-Axis Ultraprecision Actuator
,”
Rev. Sci. Instrum.
0034-6748,
65
(
4
), pp.
910
917
.
41.
Chu
,
L. L.
, and
Gianchandani
,
Y. B.
, 2003, “
A Micromachined 2D Positioner With Electrothermal Actuation and Sub-Nanometer Capacitive Sensing
,”
J. Micromech. Microeng.
0960-1317,
13
(
2
), pp.
279
285
.
42.
Jang
,
W. I.
,
Choi
,
C. A.
,
Lee
,
M. L.
,
Jun
,
C. H.
, and
Kim
,
Y. T.
, 2002, “
Fabrication of MEMS Devices by Using Anhydrous HF Gas-Phase Etching With Alcoholic Vapor
,”
J. Micromech. Microeng.
0960-1317,
12
(
3
), pp.
297
306
.
43.
Shen
,
S.-C.
,
Pan
,
C.-T.
, and
Chou
,
H.-P.
, 2002, “
Electromagnetic Optical Switch for Optical Network Communication
,”
J. Magn. Magn. Mater.
0304-8853,
239
(
1–3
), pp.
610
613
.
44.
Chen
,
S.
, and
Culpepper
,
M. L.
, 2004, “
Compliant Mechanisms for Micro-Scale Spatial Manipulators: Applications in Nanomanipulation
,”
Proc. Am. Soc. Precis. Eng.
, Orlando, FL, Oct., pp.
293
296
.
45.
Culpepper
,
M. L.
, and
Anderson
,
G.
, 2004, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
0141-6359,
28
(
4
), pp.
469
482
.
46.
Culpepper
,
M. L.
, and
Chen
,
S.
, 2003, “
Design of Precision Manipulators Using Binary Actuation and Differential Compliant Mechanisms
,”
Proc. Am. Soc. Precis. Eng.
Portland, OR, Oct., pp.
279
282
.
47.
Reid
,
P. R.
,
Bright
,
V. M.
, and
Comtois
,
J. H.
, 1996, “
Force Measurements of Polysilicon Thermal Microactuators
,”
Proc. SPIE
0277-786X,
2882
, pp.
296
306
.
48.
Manzardo
,
O.
,
Herzig
,
H. P.
,
Marxer
,
C. R.
, and
de Rooij
,
N. F.
, 1999, “
Miniaturized Time-Scanning Fourier Transform Spectrometer Based on Silicon Technology
,”
Opt. Lett.
0146-9592,
24
(
23
), pp.
1705
1707
.
49.
Syms
,
R. R. A.
, 2002, “
Long-Travel Electrothermally Driven Resonant Cantilever Microactuators
,”
J. Micromech. Microeng.
0960-1317,
12
(
3
), pp.
211
218
.
50.
Li
,
W.
,
Zhao
,
X.
,
Cai
,
B.
,
Zhou
,
G.
, and
Zhang
,
M.
, 2001, “
Magnetically Actuated MEMS Variable Optical Attenuator
,”
Proc. SPIE
0277-786X,
4601
, pp.
89
96
.
51.
McConaghy
,
C. F.
,
Lee
,
A. P.
,
Sommargren
,
G.
,
Phillion
,
D.
,
Campbell
,
E. W.
, and
Trevino
,
J.
, 1998, “
Micromechanical Actuator With Capacitive Position Correction for Phase Shifting Diffraction Interferometry
,”
Proc. ASME Micro-Electro-Mech. Syst.
, pp.
461
468
.
52.
Fan
,
L.
,
Wu
,
M. C.
,
Choquette
,
K. D.
, and
Crawford
,
M. H.
, 1997, “
Self-Assembled Microactuated XYZ Stages for Optical Scanning and Alignment
,”
Proc. Int. Conf. Solid State Sensors Actuators
, Vol.
1
, pp.
319
322
.
53.
Kim
,
C.-H.
, and
Kim
,
Y.-K.
, 2002, “
Micro XY-Stage Using Silicon on a Glass Substrate
,”
J. Micromech. Microeng.
0960-1317,
12
(
2
), pp.
103
107
.
54.
Cragun
,
R.
, and
Howell
,
L. L.
, 1999, “
Linear Thermomechanical Microactuators
,”
Proc. ASME Micro Electro Mech. Syst.
, pp.
181
188
.
55.
Guckel
,
H.
,
Fischer
,
K.
, and
Stiers
,
E.
, 1998, “
Closed Loop Controlled, Large Throw, Magnetic Linear Microactuator With 1000μm Structural Height
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
414
418
.
56.
Guckel
,
H.
,
Klein
,
J.
,
Christenson
,
T.
,
Skrobis
,
K.
,
Laudon
,
M.
, and
Lovell
,
E. G.
, 1992, “
Thermomagnetic Metal Flexure Actuators
,” Technical Digest—IEEE Solid-State Sensor Actuator Workshop, pp.
73
75
.
57.
Li
,
J.
,
Brenner
,
M. P.
,
Lang
,
J. H.
,
Slocum
,
A. H.
, and
Struempler
,
R.
, 2003, “
DRIE-Fabricated Curved-Electrode Zipping Actuators With Low Pull-in Voltage
,”
Proc. Int. Conf. Solid-State Sensors Actuators
, Vol.
1
, pp.
480
483
.
58.
Lott
,
C. D.
,
McLain
,
T. W.
,
Harb
,
J. N.
, and
Howell
,
L. L.
, 2002, “
Modeling the Thermal Behavior of a Surface-Micromachined Linear-Displacement Thermomechanical Microactuator
,”
Sens. Actuators, A
0924-4247,
A101
(
1–2
), pp.
239
250
.
59.
de Bhailis
,
D.
,
Murray
,
C.
,
Duffy
,
M.
,
Alderman
,
J.
,
Kelly
,
G.
, and
Mathúna
,
S. C. O.
, 2000, “
Modelling and Analysis of a Magnetic Microactuator
,”
Sens. Actuators, A
0924-4247,
A81
(
1
), pp.
285
289
.
60.
Neagu
,
C. R.
,
Gardeniers
,
J. G. E.
,
Elwenspoek
,
M.
, and
Kelly
,
J. J.
, 1996, “
An Electrochemical Microactuator: Principle and First Results
,”
J. Microelectromech. Syst.
1057-7157,
5
(
1
), pp.
2
9
.
61.
Neagu
,
C. R.
,
Gardeniers
,
J. G. E.
,
Elwenspoek
,
M.
, and
Kelly
,
J. J.
, 1997, “
An Electrochemical Active Valve
,”
Electrochim. Acta
0013-4686,
42
(
20–22
), pp.
3367
3373
.
62.
Stanczyk
,
T.
,
Ilic
,
B.
,
Hesketh
,
P. J.
, and
Boyd
,
J. G. I. V.
, 2000, “
A Microfabricated Electrochemical Actuator for Large Displacements
,”
J. Microelectromech. Syst.
1057-7157,
9
(
3
), pp.
314
320
.
63.
Madou
,
M. J.
, 2002,
Fundamentals of Microfabrication: The Science of Miniaturization
, 2nd ed.,
CRC Press
, Boca Raton, FL.
64.
Maluf
,
N.
, 2000,
An Introduction to Microelectromechanical Systems Engineering
,
Artech House
, Boston.
65.
Jaecklin
,
V. P.
,
Linder
,
C.
,
de Rooij
,
N. F.
, and
Moret
,
J.-M.
, 1992, “
Micromechanical Comb Actuators With Low Driving Voltage
,”
J. Micromech. Microeng.
0960-1317,
2
(
4
), pp.
250
255
.
66.
Lee
,
C. S. B.
,
Han
,
S.
, and
MacDonald
,
N. C.
, 2000, “
Single Crystal Silicon (SCS) XY-Stage Fabricated by DRIE and IR Alignment
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
28
33
.
67.
Comtois
,
J. H.
,
Michalicek
,
M. A.
, and
Barron
,
C. C.
, 1997, “
Characterization of Electrothermal Actuators and Arrays Fabricated in a Four-Level, Planarized Surface-Micromachined, Polycrystalline Silicon Process
,”
Proc. Int. Conf. Solid State Sensors Actuators
, Vol.
2
, pp.
769
772
.
68.
Hubbard
,
N. B.
, and
Howell
,
L. L.
, 2004, “
Experimental Repeatability of a Thermal Actuator for Nanopositioning
,”
Proc. ASME Micro Electro Mech. Syst.
, Paper No. IMECE2004-59616.
69.
Oliver
,
A. D.
,
Vigil
,
S. R.
, and
Gianchandani
,
Y. B.
, 2003, “
Photothermal Surface-Micromachined Actuators
,”
IEEE Trans. Electron Devices
0018-9383,
50
(
4
), pp.
1156
1157
.
70.
Park
,
J.-S.
,
Chu
,
L. L.
,
Oliver
,
A. D.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent-Beam Electrothermal Actuators—Part II: Linear and Rotary Microengines
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
255
262
.
71.
Que
,
L.
,
Park
,
J.-S.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent-Beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
247
254
.
72.
Akiyama
,
T.
, and
Shono
,
K.
, 1993, “
Controlled Stepwise Motion in Polysilicon Microstructures
,”
J. Microelectromech. Syst.
1057-7157,
2
(
3
), pp.
106
110
.
73.
Fukuta
,
Y.
,
Collard
,
D.
,
Akiyama
,
T.
,
Yang
,
E. H.
, and
Fujita
,
H.
, 1997, “
Microactuated Self-Assembling of 3D Polysilicon Structures With Reshaping Technology
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
477
481
.
74.
Park
,
J.
,
Keller
,
S.
,
Carman
,
G. P.
, and
Hahn
,
H. T.
, 2001, “
Development of a Compact Displacement Accumulation Actuator Device for Both Large Force and Large Displacement
,”
Sens. Actuators, A
0924-4247,
A90
(
3
), pp.
191
202
.
75.
Ferreira
,
A.
, and
Fontaine
,
J.-G.
, 2001, “
Coarse/Fine Motion Control of a Teleoperated Autonomous Piezoelectric Nanopositioner Operating Under a Microscope
,”
Proc. IEEE/ASME Int. Conf. Adv. Intellig. Mechatron.
Vol.
2
, pp.
1313
1318
.
76.
Ferreira
,
A.
, and
Minotti
,
P.
, 1997, “
Control of a Multidegree of Freedom Standing Wave Ultrasonic Motor Driven Precise Positioning System
,”
Rev. Sci. Instrum.
0034-6748,
68
(
4
), pp.
1779
1786
.
77.
Kladitis
,
P. E.
,
Bright
,
V. M.
,
Harsh
,
K. F.
, and
Lee
,
Y. E.
, 1999, “
Prototype Microrobots for Micro Positioning in a Manufacturing Process and Micro Unmanned Vehicles
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
570
575
.
78.
Conway
,
N. Y.
, and
Kim
,
S.-G.
, 2004, “
Large-Strain, Piezoelectric, In-Plane Micro-Actuator
,”
Proc. IEEE Micro Electro Mech. Syst.
, pp.
454
457
.
79.
Hoffmann
,
M.
,
Leuerer
,
T.
,
Krüger
,
C.
,
Böttger
,
U.
,
Mokwa
,
W.
, and
Waser
,
R.
, 2002, “
Fabrication and Characterization of a PZT Thin Flim Actuator for a Micro Electromechanical Switch Application
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
688
, pp.
145
152
.
80.
Lagorce
,
L. K.
,
Brand
,
O.
, and
Allen
,
M. G.
, 1999, “
Magnetic Microactuators Based on Polymer Magnets
,”
J. Microelectromech. Syst.
1057-7157,
8
(
1
), pp.
2
9
.
81.
Yi
,
Y. W.
, and
Liu
,
C.
, 1999, “
Magnetic Actuation of Hinged Microstructures
,”
J. Microelectromech. Syst.
1057-7157,
8
(
1
), pp.
10
17
.
82.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
, 2002,
Feedback Control of Dynamic Systems
, 4th ed.,
Prentice-Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.