A review is given of numerical, analytical, and experimental research regarding the two-way coupling effect between particles and fluid turbulence in a homogeneous, isotropic turbulent suspension. The emphasis of this review is on the effect of the suspended particles on the spectrum of the carrier fluid, in order to explain the physical mechanisms that are involved. An important result of numerical simulations and analytical models (neglecting the effect of gravity) is that, for a homogeneous and isotropic suspension with particles with a response time much larger than the Kolmogorov time scale, the main effect of the particles is suppression of the energy of eddies of all sizes. However for a suspension with particles with a response time comparable to or smaller than the Kolmogorov time, the Kolmogorov length scale will decrease and the turbulence energy of (nearly) all eddy sizes increases. For a suspension with particles with a response time in between the two limiting cases mentioned above the energy of the larger eddies is suppressed, whereas the energy of the smaller ones is enhanced. Attention is paid to several physical mechanisms that were suggested in the literature to explain this influence of the particles on the turbulence. In some of the experimental studies, certain results from simulations and models have, indeed, been confirmed. However, in other experiments these results were not found. This is attributed to the role of gravity, which leads to turbulence production by the particles. Additional research effort is needed to fully understand the physical mechanisms causing the two-way coupling effect in a homogeneous, isotropic, and turbulently flowing suspension. This review contains 47 references.

1.
Hetsroni
,
G.
, 1989, “
Particles-Turbulence Interaction
,”
Int. J. Multiphase Flow
0301-9322,
15
(
5
), pp.
735
746
.
2.
Elghobashi
,
S.
, 1994, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
0003-6994,
52
, pp.
309
329
.
3.
Crowe
,
C.
,
Troutt
,
T.
, and
Chung
,
J.
, 1996, “
Numerical Models for Two-Phase Flows
,”
Annu. Rev. Fluid Dyn.
,
28
, pp.
11
43
.
4.
Mashayek
,
F.
, and
Pandya
,
R.
, 2003, “
Analytical Description of Particle/Droplet-Laden Turbulent Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
29
(
4
), pp.
329
378
.
5.
Squires
,
K.
, and
Eaton
,
J.
, 1990, “
Particle Response and Turbulence Modification in Isotropic Turbulence
,”
Phys. Fluids A
0899-8213,
2
(
7
), pp.
1191
1203
.
6.
Squires
,
K.
, and
Eaton
,
J.
, 1994, “
Effect of Selective Modification of Turbulence on Two-Equation Models for Particle-Laden Turbulent Flows
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
778
784
.
7.
Elghobashi
,
S.
, and
Truesdell
,
G.
, 1993, “
On the Two-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles, I: Turbulence Modification
,”
Phys. Fluids A
0899-8213,
5
(
7
), pp.
1790
1801
.
8.
Maxey
,
M.
, and
Riley
,
J.
, 1983, “
Equation of Motion for a Small Rigid Sphere in Nonuniform Flow
,”
Phys. Fluids
0031-9171,
26
(
4
), pp.
883
889
.
9.
Boivin
,
M.
,
Simonin
,
O.
, and
Squires
,
K.
, 1998, “
Direct Numerical Simulation of Turbulence Modulation by Particles in Isotropic Turbulence
,”
J. Fluid Mech.
0022-1120,
375
, pp.
235
263
.
10.
Sundaram
,
S.
, and
Collins
,
L.
, 1999, “
A Numerical Study of the Modulation of Isotropic Turbulence by Suspended Particles
,”
J. Fluid Mech.
0022-1120,
379
, pp.
105
143
.
11.
Ferrante
,
A.
, and
Elghobashi
,
S.
, 2003, “
On the Physical Mechanisms of Two-Way Coupling in Particle-Laden Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
15
(
2
), pp.
315
329
.
12.
ten Cate
,
A.
,
Derksen
,
J.
,
Kramer
,
H.
,
Rosmalen
,
G.
, and
Van den Akker
,
H.
, 2001, “
The Microscopic Modeling of Hydrodynamics in Industrial Crystallisers
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
2495
2509
.
13.
ten Cate
,
A.
, 2002, “
Turbulence and Particle Dynamics in Dense Crystal Slurries
,” Ph.D. thesis, Delft University Press, The Netherlands.
14.
Mittal
,
R.
, 2000, “
Response of the Sphere Wake to Freestream Fluctuations
,”
Theor. Comput. Fluid Dyn.
0935-4964,
13
, pp.
397
419
.
15.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2003, “
Inertial and Viscous Forces on a Rigid Sphere in Straining Flows at Moderate Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
481
, pp.
105
148
.
16.
Zhang
,
D.
, and
Prosperetti
,
A.
, 2003, “
Momentum and Energy Equations for Disperse Two-Phase Flows and Their Closure for Dilute Suspensions
,”
Int. J. Multiphase Flow
0301-9322,
15
(
4
), pp.
868
880
.
17.
Baw
,
P.
, and
Peskin
,
R.
, 1971, “
Some Aspects of Gas-Solid Suspension Turbulence
,”
ASME J. Basic Eng.
0021-9223,
93
, pp.
631
635
.
18.
Felderhof
,
B.
, and
Ooms
,
G.
, 1990, “
Effect of Inertia, Friction and Hydrodynamic Interactions on Turbulent Diffusion
,”
Eur. J. Mech. B/Fluids
0997-7546,
9
, pp.
349
368
.
19.
Ooms
,
G.
, and
Jansen
,
G.
, 2000, “
Particles-Turbulence Interaction in Stationary, Homogeneous, Isotropic Turbulence
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
1831
1850
.
20.
Ooms
,
G.
,
Poelma
,
C.
, and
Westerweel
,
J.
, 2002,
Advances in Turbulence IX, proc. of ETC-9 Southampton (UK)
, CIMNE, Barcelona, pp.
369
372
.
21.
L’vov
,
V.
,
Ooms
,
G.
, and
Pomyalov
,
A.
, 2003, “
Effect of Particle Inertia on Turbulence in a Suspension
,”
Phys. Rev. E
1063-651X,
67
(
4
), pp.
1
21
.
22.
Ooms
,
G.
, and
Poelma
,
C.
, 2004, “
Comparison Between Theoretical Predictions and DNS-Results for a Decaying Turbulent Suspension
,”
Phys. Rev. E
1063-651X,
69
(
5
), p.
056311
.
23.
Druzhinin
,
O.
, 2001, “
The Influence of Particle Inertia on the Two-Way Coupling and Modification of Isotropic Turbulence by Microparticles
,”
Phys. Fluids
1070-6631,
13
(
12
), pp.
3378
3755
.
24.
Druzhinin
,
O.
, and
Elghobashi
,
S.
, 1999, “
On the Decay Rate of Isotropic Turbulence Laden With Microparticles
,”
Phys. Fluids
1070-6631,
11
, pp.
602
610
.
25.
Yuan
,
Z.
, and
Michaelides
,
E.
, 1992, “
Turbulence Modulation in Particulate Flows: A Theoretical Approach
,”
Int. J. Multiphase Flow
0301-9322,
18
, pp.
779
785
.
26.
Yarin
,
L.
, and
Hetsroni
,
G.
, 1994, “
Turbulence Intensity in Dilute Two-Phase Flow. 3: The Particles-Turbulence Interaction in Dilute Two-Phase Flow
,”
Int. J. Multiphase Flow
0301-9322,
20
, pp.
27
44
.
27.
Crowe
,
C.
, 2000, “
On Models for Turbulence Modulation in Fluid-Particle Flows
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
719
727
.
28.
Parthasarathy
,
R.
, and
Faeth
,
G.
, 1990, “
Turbulence Modulation in Homogeneous Dilute Particle-Laden Flow
,”
J. Fluid Mech.
0022-1120,
220
, pp.
485
514
.
29.
Elperin
,
T.
,
Kleeorin
,
N.
,
L’vov
,
V.
,
Rogachevskii
,
I.
, and
Sokoloff
,
D.
, 2002, “
Clustering Instability of the Spatial Distribution of Intertial Particles in Turbulent Flows
,”
Phys. Rev. E
1063-651X,
66
(
3
), pp.
036302
.
30.
Balkovsky
,
E.
,
Falkovich
,
G.
, and
Fouxon
,
A.
, 2001, “
Intermittent Distribution of Inertial Particles in Turbulent Flows
,”
Phys. Rev. Lett.
0031-9007,
86
(
13
), pp.
2790
2793
.
31.
Bennet
,
S.
, and
Best
,
J.
, 1995, “
Particle Size and Velocity Discrimination in a Sediment-Laden Turbulent Flow Using Phase Doppler Anemometry
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
505
510
.
32.
Huppert
,
H.
,
Turner
,
J.
, and
Hallworth
,
M.
, 1995, “
Sedimentation and Entrainment in Dense Layers of Suspended Particles Stirred by an Oscillating Grid
,”
J. Fluid Mech.
0022-1120,
289
, pp.
269
293
.
33.
Orlins
,
J.
, and
Gulliver
,
J.
, 2003, “
Turbulence Quantification and Sediment Resuspension in an Oscillating Grid Chamber
,”
Exp. Fluids
0723-4864,
34
(
6
), pp.
662
677
.
34.
Fallon
,
T.
, and
Rogers
,
C.
, 2002, “
Turbulence-Induced Preferential Concentration of Solid Particles in Microgravity Conditions
,”
Exp. Fluids
0723-4864,
33
(
2
), pp.
233
241
.
35.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
, 1971, “
Simple Eulerian Time Correlations of Full-and Narrow-Band Velocity Signals in Grid-Generated Isotropic Turbulence
,”
J. Fluid Mech.
0022-1120,
48
, pp.
273
337
.
36.
Batchelor
,
G.
, 1953,
The Theory of Homogeneous Turbulence
,
Cambridge University Press
, Cambridge, England.
37.
Boyer
,
C.
,
Duquenne
,
A.-M.
, and
Wild
,
G.
, 2002, “
Measuring Techniques in Gas-Liquid and Gas-Liquid-Solid Reactors
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
3185
3215
.
38.
Schreck
,
S.
, and
Kleis
,
S.
, 1993, “
Modification of Grid-Generated Turbulence by Solid Particles
,”
J. Fluid Mech.
0022-1120,
249
, pp.
665
688
.
39.
Hussainov
,
M.
,
Karthushinsky
,
A.
,
Rudi
,
Ü.
,
Shcheglov
,
I.
,
Kohnen
,
G.
, and
Sommerfeld
,
M.
, 2000, “
Experimental Investigation of Turbulence Modulation by Solid Particles in a Grid-Generated Vertical Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
365
373
.
40.
Geiss
,
S.
,
Dreizler
,
A.
,
Stojanovic
,
Z.
,
Chrigui
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
, 2004, “
Investigation of Turbulence Modification in a Non-Reactive Two-Phase Flow
,”
Exp. Fluids
0723-4864,
36
, pp.
344
354
.
41.
Nishino
,
K.
,
Matsushita
,
H.
, and
Torii
,
K.
, 2003, “
Piv Measurements of Turbulence Modification by Solid Particles in Upward Grid Turbulence of Water
,”
Proc. of 5th Int. Symp. on PIV, Busan (Korea)
, p.
3118
.
42.
Poelma
,
C.
,
Westerweel
,
J.
, and
Ooms
,
G.
, 2003, “
Turbulence Modification by Particles, Experiments Using PIV/PTV
,”
European Fluid Mechanics Conference, Toulouse (France)
.
43.
Poelma
,
C.
, 2004, “
Experiments in Particle-Laden Turbulence
,” Ph.D. thesis, Delft University of Technology, The Netherlands.
44.
Chen
,
J.
,
Wu
,
J.
, and
Faeth
,
G.
, 2000, “
Turbulence Generation in a Homogeneous Particle-Laden Flow
,”
AIAA J.
0001-1452,
38
(
4
), pp.
636
642
.
45.
Lee
,
K.
,
Faeth
,
G.
, and
Chen
,
J.-H.
, 2003, “
Properties of Particle-Generated Turbulence in the Final-Decay Period
,”
AIAA J.
0001-1452,
41
(
7
), pp.
1332
1340
.
46.
Eaton
,
J.
, and
Fessler
,
J.
, 1994, “
Preferential Concentration of Particles by Turbulence
,”
Int. J. Multiphase Flow
0301-9322,
20
(
1
), pp.
169
209
.
47.
Aliseda
,
A.
,
Cartellier
,
A.
,
Hainaux
,
F.
, and
Lasheras
,
J.
, 2002, “
Effect of Preferential Concentration on the Settling Velocity of Heavy Particles in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
0022-1120,
468
, pp.
77
105
.
You do not currently have access to this content.