Computer simulation and modeling results for the nanomechanics of carbon nanotubes and carbon nanotube-polyethylene composite materials are described and compared with experimental observations. Young’s modulus of individual single-wall nanotubes is found to be in the range of 1 TPa within the elastic limit. At room temperature and experimentally realizable strain rates, the tubes typically yield at about 5–10% axial strain; bending and torsional stiffness and different mechanisms of plastic yielding of individual single-wall nanotubes are discussed in detail. For nanotube-polyethylene composites, we find that thermal expansion and diffusion coefficients increase significantly, over their bulk polyethylene values, above glass transition temperature, and Young’s modulus of the composite is found to increase through van der Waals interaction. This review article cites 54 references.

1.
Iijima
S
(
1991
),
Helical microtubules of graphitic carbon
,
Nature (London)
354
,
56
58
.
2.
Iijima
S
(
1993
),
Single-shell carbon nanotubes of 1-nm diameter
,
Nature (London)
363
,
603
605
.
3.
Bethune
DS
,
Kiang
CH
,
Devries
MS
,
Gorman
G
,
Savoy
R
,
Vazquez
J
, and
Beyers
R
(
1993
),
Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls
,
Nature (London)
363
,
605
607
.
4.
Saito R, Dresselhaus G, and Dresselhaus MS (1998), Physical Properties of Carbon Nanotubes, Imperial College Press, London.
5.
Dresselhaus MS, Dresselhaus G, and Avouris Ph (eds) (2001), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag Berlin, Heidelberg.
6.
Allen MP and Tildsley DJ (1987), Computer Simulations of Liquids, Oxford Science Publications, Oxford.
7.
Brenner DW, Shenderova OA, and Areshkin DA (1998), Reviews in Computational Chemistry, KB Lipkowitz and DB Boyd (eds), 213, VCH Publishers, New York.
8.
Garrison
BJ
and
Srivastava
D
(
1995
),
Potential-energy surfaces for chemical-reactions at solid-surfaces
,
Ann. Rev. Phys. Chem.
46
,
373
394
.
9.
Srivastava D and Barnard S (1997), Molecular dynamics simulation of large scale carbon nanotubes on a shared memory archi-tecture, Proc. IEEE Supercomputing 97 (SC’97 cd-rom), [Published]. [Paper No].
10.
Harrison WA (1980), Electronic Structure and the Properties of Solids, Freeman, San Francisco.
11.
Menon
M
and
Subbaswamy
KR
(
1997
),
Nonorthogonal tight-binding molecular dynamics scheme for silicon with improved transferability
,
Phys. Rev. B
55
,
9231
9234
.
12.
Menon
M
(
2001
),
Generalized tight-binding molecular dynamics scheme for heteroatomic systems: Application to SimCn clusters
,
J. Chem. Phys.
114
,
7731
7735
.
13.
Payne
MC
,
Teter
MP
,
Allan
DC
,
Arias
TA
, and
Joannopoulos
JD
(
1992
),
Iterative minimization techniques for abinitio total-energy calculations: molecular-dynamics and conjugate gradients
,
Rev. Mod. Phys.
68
,
1045
1097
.
14.
Hohenberg
P
and
Kohn
W
(
1964
),
Inhomogeneous electron gas
,
Phys. Rev. B
136
,
B864
B864
.
15.
Kohn
W
and
Sham
LJ
(
1965
),
Self-consistent equations including exchange and correlation effects
,
Phys. Rev.
140
,
A1133
A1133
.
16.
Check the web site for the details, http://cms.mpi.univie.ac.at/vasp/.
17.
Srivastava
D
,
Menon
M
, and
Cho
K
(
2001
),
Computational nanotechnology with carbon nanotubes and fullerenes, (Special Issue on Nanotechnology)
Computing in Engineering and Sciences
3
(
4
),
42
55
.
18.
Robertson
DH
,
Brenner
DW
, and
Mintmire
JW
(
1992
),
Energetics of nanoscale graphitic tubules
,
Phys. Rev. B
45
,
12592
12595
.
19.
Tibbetts
GG
(
1984
),
Why are carbon filaments tubular
,
J. Cryst. Growth
66
,
632
638
.
20.
Yakobson
BI
,
Brabec
CJ
, and
Bernholc
J
(
1996
),
Nanomechanics of carbon tubes: Instabilities beyond linear response
,
Phys. Rev. Lett.
76
,
2511
2514
.
21.
Lu
JP
(
1997
),
Elastic properties of carbon nanotubes and nanoropes
,
Phys. Rev. Lett.
79
,
1297
1300
.
22.
Hernandez
E
,
Goze
C
,
Bernier
P
, and
Rubio
A
(
1998
),
Elastic properties of C and BxCyNz composite nanotubes
,
Phys. Rev. Lett.
80
,
4502
4505
.
23.
Sanchez-Portal
D
,
Artacho
E
,
Solar
JM
,
Rubio
A
, and
Ordejon
P
(
1999
),
Ab initio structural, elastic, and vibrational properties of carbon nanotubes
,
Phys. Rev. B
59
,
12678
12688
.
24.
Srivastava
D
,
Menon
M
, and
Cho
K
(
2001
),
Anisotropic nanomechanics of boron nitride nanotubes: Nanostructured “skin” effect
,
Phys. Rev. B
63
,
195413
195416
.
25.
Ru
CQ
(
2000
),
Effective bending stiffness of carbon nanotubes
,
Phys. Rev. B
62
,
9973
9976
.
26.
Harik
VM
(
2001
),
Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods
,
Solid State Commun.
120
,
331
335
.
27.
Landau LD and Lifschitz EM (1986), Theory of Elasticity, 3rd Edition, Pergamon Press, Oxford [Oxfordshire], New York.
28.
Poncharal
P
,
Wang
ZL
,
Ugarte
D
, and
deHeer
WA
(
1999
),
Electrostatic deflections and electromechanical resonances of carbon nanotubes
,
Science
283
,
1513
1516
.
29.
Iijima
S
,
Brabec
C
,
Maiti
A
, and
Bernholc
J
(
1996
),
Structural flexibility of carbon nanotubes
,
J. Chem. Phys.
104
,
2089
2092
.
30.
Treacy
MMJ
,
Ebbesen
TW
, and
Gibson
JM
(
1996
),
Exceptionally high Young’s modulus observed for individual carbon nanotubes
,
Nature (London)
381
,
678
680
.
31.
Wong
EW
,
Sheehan
PE
, and
Lieber
CM
(
1997
),
Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes
,
Science
277
,
1971
1975
.
32.
Krishnan
A
,
Dujardin
E
,
Ebbesen
TW
,
Yianilos
PN
, and
Treacy
MMJ
(
1998
),
Young’s modulus of single-walled nanotubes
,
Phys. Rev. B
58
,
14013
14019
.
33.
Salvetat
JP
,
Briggs
GAD
,
Bonard
JM
,
Bacsa
RR
,
Kulik
AJ
,
Stockli
T
,
Burnham
NA
, and
Forro
L
(
1999
),
Elastic and shear moduli of single-walled carbon nanotube ropes
,
Phys. Rev. Lett.
82
,
944
947
.
34.
Lourie
O
,
Cox
DM
, and
Wagner
HD
(
1998
),
Buckling and collapse of embedded carbon nanotubes
,
Phys. Rev. Lett.
81
,
1638
1641
.
35.
Srivastava
D
,
Menon
M
, and
Cho
K
(
1999
),
Nanoplasticity of single-wall carbon nanotubes under uniaxial compression
,
Phys. Rev. Lett.
83
,
2973
2676
.
36.
Nardelli
MB
,
Yakobson
BI
, and
Bernholc
J
(
1998
),
Brittle and ductile behavior in carbon nanotubes
,
Phys. Rev. Lett.
81
,
4656
4659
.
37.
Nardelli
MB
,
Yakobson
BI
, and
Bernholc
J
(
1998
),
Mechanism of strain release in carbon nanotubes
Phys. Rev. B
57
,
4277
4280
.
38.
Zhang
PH
,
Lammert
PE
, and
Crespi
VH
(
1998
),
Plastic deformations of carbon nanotubes
,
Phys. Rev. Lett.
81
,
5346
5349
.
39.
Yakobson
BI
,
Campbell
MP
,
Brabec
CJ
, and
Bernholc
J
(
1997
),
High strain rate fracture and C-chain unraveling in carbon nanotubes
,
Comput. Mater. Sci.
8
,
341
348
.
40.
Walters
DA
,
Ericson
LM
,
Casavant
MJ
,
Liu
J
,
Colbert
DT
,
Smith
KA
, and
Smalley
RE
(
1999
),
Elastic strain of freely suspended single-wall carbon nanotube ropes
,
Appl. Phys. Lett.
74
,
3803
3805
.
41.
Yu
MF
,
Files
BS
,
Arepalli
S
, and
Ruoff
RS
(
2000
),
Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties
,
Phys. Rev. Lett.
84
,
5552
5555
.
42.
Yu
MF
,
Lourie
O
,
Dyer
MJ
,
Moloni
K
,
Kelly
TF
, and
Ruoff
RS
(
2000
),
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load
,
Science
287
,
637
640
.
43.
Wei
CY
,
Cho
K
, and
Srivastava
D
(
2002
), Tensile strength of carbon nanotubes under realistic temperature and strain rate, http://xxx.lanl.gov/abs/condmat/0202513.
44.
Wei C, Cho K, and Srivastava D (2001), Temperature and strain-rate dependent plastic deformation of carbon nanotube, MRS Symp Proc 677, AA6.5.
45.
Wei
CY
,
Srivastava
D
, and
Cho
K
(
2002
),
Molecular dynamics study of temperature dependent plastic collapse of carbon nanotubes under axial compression
,
Computer Modeling in Engineering and Sciences
3
,
255
261
.
46.
Vigolo
B
,
Penicaud
A
,
Coulon
C
,
Sauder
C
,
Pailler
R
,
Journet
C
,
Bernier
P
, and
Poulin
P
(
2000
),
Macroscopic fibers and ribbons of oriented carbon nanotubes
,
Science
290
,
1331
1334
.
47.
Schadler
LS
,
Giannaris
SC
, and
Ajayan
PM
(
1998
),
Load transfer in carbon nanotube epoxy composites
,
Appl. Phys. Lett.
73
,
3842
3844
.
48.
Andrews
R
,
Jacques
D
,
Rao
AM
,
Rantell
T
,
Derbyshire
F
,
Chen
Y
,
Chen
J
, and
Haddon
RC
(
1999
),
Nanotube composite carbon fibers
,
Appl. Phys. Lett.
75
,
1329
1331
.
49.
Osman
MA
, and
Srivastava
D
(
2001
),
Temperature dependence of the thermal conductivity of single-wall carbon nanotubes
,
Nanotechnology
12
,
21
24
.
50.
Wei
CY
,
Srivastava
D
, and
Cho
K
(
2002
),
Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites
,
Nano Lett.
2
,
647
650
.
51.
Frankland SJV, Caglar A, Brenner DW, and Griebe M (2000, Fall), Reinforcement mechanisms in polymer nanotube composites: simulated non-bonded and cross-linked systems MRS Symp Proc, A14.17.
52.
Wagner
HD
,
Lourie
O
,
Feldman
Y
, and
Tenne
R
(
1998
),
Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix
,
Appl. Phys. Lett.
72
,
188
190
.
53.
Lourier
O
, and
Wagner
HD
(
1998
),
Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension
,
Appl. Phys. Lett.
73
,
3527
3529
.
54.
Qian
Q
,
Dickey
EC
,
Andrews
R
, and
Rantell
T
(
2000
),
Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites
,
Appl. Phys. Lett.
76
,
2868
2870
.
You do not currently have access to this content.