Skip Nav Destination
Issues
March 2001
ISSN 0021-8936
EISSN 1528-9036
In this Issue
Technical Papers
Finite Amplitude Azimuthal Shear Waves in a Compressible Hyperelastic Solid
J. Appl. Mech. March 2001, 68(2): 145–152.
doi: https://doi.org/10.1115/1.1334862
Topics:
Longitudinal waves
,
Shear (Mechanics)
,
Shear waves
,
Wave propagation
,
Waves
,
Cavities
,
Shear deformation
,
Equations of motion
,
Shear stress
A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales
J. Appl. Mech. March 2001, 68(2): 153–161.
doi: https://doi.org/10.1115/1.1357165
Transient Green’s Function Behavior for a Prestressed Highly Elastic Half-Space
J. Appl. Mech. March 2001, 68(2): 162–168.
doi: https://doi.org/10.1115/1.1357167
Topics:
Deformation
,
Stress
,
Transients (Dynamics)
,
Rayleigh waves
,
Waves
Intersonic Crack Propagation—Part I: The Fundamental Solution
J. Appl. Mech. March 2001, 68(2): 169–175.
doi: https://doi.org/10.1115/1.1357871
Topics:
Crack propagation
,
Fracture (Materials)
,
Shear (Mechanics)
,
Shear waves
,
Stress
Apparently First Closed-Form Solution for Frequencies of Deterministically and/or Stochastically Inhomogeneous Simply Supported Beams
J. Appl. Mech. March 2001, 68(2): 176–185.
doi: https://doi.org/10.1115/1.1355034
Topics:
Density
,
Mode shapes
,
Polynomials
,
Probability
,
Reliability
,
Simply supported beams
,
Stiffness
,
Boundary-value problems
,
Vibration
Exact Solutions for Out-of-Plane Vibration of Curved Nonuniform Beams
J. Appl. Mech. March 2001, 68(2): 186–191.
doi: https://doi.org/10.1115/1.1346679
Topics:
Differential equations
,
Vibration
,
Displacement
Dynamic Analysis of a One-Dimensional Poroviscoelastic Column
J. Appl. Mech. March 2001, 68(2): 192–198.
doi: https://doi.org/10.1115/1.1349416
Topics:
Boundary-value problems
,
Damping
,
Differential equations
,
Fluids
,
Pressure
,
Stress
,
Viscoelasticity
,
Displacement
,
Soil
,
Dynamic analysis
Bifurcations of Eigenvalues of Gyroscopic Systems With Parameters Near Stability Boundaries
J. Appl. Mech. March 2001, 68(2): 199–205.
doi: https://doi.org/10.1115/1.1356417
Topics:
Eigenvalues
,
Stability
Does a Partial Elastic Foundation Increase the Flutter Velocity of a Pipe Conveying Fluid?
J. Appl. Mech. March 2001, 68(2): 206–212.
doi: https://doi.org/10.1115/1.1354206
Topics:
Damping
,
Fluids
,
Flutter (Aerodynamics)
,
Pipes
,
Stability
Optimal Fiber Orientation in Locally Transversely Isotropic Creeping Structures
J. Appl. Mech. March 2001, 68(2): 213–217.
doi: https://doi.org/10.1115/1.1354623
Determination of Poisson’s Ratio by Spherical Indentation Using Neural Networks—Part I: Theory
J. Appl. Mech. March 2001, 68(2): 218–223.
doi: https://doi.org/10.1115/1.1354624
Determination of Poisson’s Ratio by Spherical Indentation Using Neural Networks—Part II: Identification Method
J. Appl. Mech. March 2001, 68(2): 224–229.
doi: https://doi.org/10.1115/1.1355032
Generalized Bending of a Large, Shear Deformable Isotropic Plate Containing a Circular Hole or Rigid Inclusion
J. Appl. Mech. March 2001, 68(2): 230–233.
doi: https://doi.org/10.1115/1.1348014
Three-Dimensional Solutions of Smart Functionally Graded Plates
J. Appl. Mech. March 2001, 68(2): 234–241.
doi: https://doi.org/10.1115/1.1347994
Topics:
Actuators
,
Functionally graded materials
,
Plates (structures)
,
Stress
,
Electric load
,
Vibration
,
Materials properties
,
Ceramics
,
Metals
,
Active materials
Simulations of Crack Propagation in Porous Materials
J. Appl. Mech. March 2001, 68(2): 242–251.
doi: https://doi.org/10.1115/1.1356029
Topics:
Coatings
,
Crack propagation
,
Error analysis
,
Fracture (Materials)
,
Porous materials
,
Stress
,
Finite element analysis
,
Displacement
,
Errors
Thin-Walled Multicell Beam Analysis for Coupled Torsion, Distortion, and Warping Deformations
J. Appl. Mech. March 2001, 68(2): 260–269.
doi: https://doi.org/10.1115/1.1357166
Topics:
Deformation
,
Torsion
,
Warping
,
Corners (Structural elements)
,
Displacement
Hysteresis Behavior and Modeling of Piezoceramic Actuators
J. Appl. Mech. March 2001, 68(2): 270–277.
doi: https://doi.org/10.1115/1.1357168
Rheological Behavior of Confined Fluids in Thin Lubricated Contacts
J. Appl. Mech. March 2001, 68(2): 278–283.
doi: https://doi.org/10.1115/1.1354204
Topics:
Boundary lubrication
,
Fluids
,
Journal bearings
,
Lubricants
,
Lubrication
,
Pressure
,
Rheology
,
Stress
,
Wedges
,
Film thickness
Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture
J. Appl. Mech. March 2001, 68(2): 284–293.
doi: https://doi.org/10.1115/1.1354205
Rupture of Thin Power-Law Liquid Film on a Cylinder
J. Appl. Mech. March 2001, 68(2): 294–297.
doi: https://doi.org/10.1115/1.1355033
Topics:
Cylinders
,
Liquid films
,
Rupture
,
Finite difference methods
,
Thin films
,
Film thickness
,
Boundary-value problems
,
Stability
Thermal Deformation of Initially Curved Substrates Coated by Thin Inhomogeneous Layers
J. Appl. Mech. March 2001, 68(2): 298–303.
doi: https://doi.org/10.1115/1.1357169
Topics:
Anisotropy
,
Coatings
,
Deformation
,
Membranes
,
Shells
,
Stress
,
Boundary layers
,
Deflection
,
Silicon
,
Thermal deformation
A Strain-Based Formulation for the Coupled Viscoelastic/Damage Behavior
J. Appl. Mech. March 2001, 68(2): 304–311.
doi: https://doi.org/10.1115/1.1348013
Flow in Porous Media of Variable Permeability and Novel Effects
J. Appl. Mech. March 2001, 68(2): 312–319.
doi: https://doi.org/10.1115/1.1349120
Topics:
Flow (Dynamics)
,
Fluids
,
Permeability
,
Porous materials
,
Reynolds number
,
Pressure drop
,
Viscosity
,
Friction
Rotary Inertia in the Classical Nonlinear Theory of Shells and the Constitutive (Non-Kinematic) Kirchhoff Hypothesis
J. Appl. Mech. March 2001, 68(2): 320–323.
doi: https://doi.org/10.1115/1.1357870
Topics:
Density
,
Kinematics
,
Rotational inertia
,
Shells
,
Rotation
,
Tensors
Stability of the Shanley Column Under Cyclic Loading
J. Appl. Mech. March 2001, 68(2): 324–331.
doi: https://doi.org/10.1115/1.1349118
Topics:
Cycles
,
Displacement
,
Stress
,
Stability
Modal Analysis of Ballooning Strings With Small Curvature
J. Appl. Mech. March 2001, 68(2): 332–338.
doi: https://doi.org/10.1115/1.1355776
Topics:
Displacement
,
Dynamic response
,
Modal analysis
,
Mode shapes
,
Nonlinear equations
,
Resonance
,
Rotation
,
Steady state
,
String
,
Tension
Brief Notes
A New Lagrangian and a New Lagrange Equation of Motion for Fractionally Damped Systems
J. Appl. Mech. March 2001, 68(2): 339–341.
doi: https://doi.org/10.1115/1.1352017
Topics:
Damping
,
Equations of motion
On the Unification of Yield Criteria
J. Appl. Mech. March 2001, 68(2): 341–343.
doi: https://doi.org/10.1115/1.1320451
Analytical Solution for W-N Criteria for the Prediction of Notched Strength of an Orthotropic Shell
J. Appl. Mech. March 2001, 68(2): 344–346.
doi: https://doi.org/10.1115/1.1320452
Stress Wave Propagation in a Coated Elastic Half-Space due to Water Drop Impact
J. Appl. Mech. March 2001, 68(2): 346–348.
doi: https://doi.org/10.1115/1.1352060
Topics:
Coating processes
,
Coatings
,
Elastic half space
,
Stress
,
Water
,
Wave propagation
,
Pressure
,
Waves
Closed-Form Representation of Beam Response to Moving Line Loads
J. Appl. Mech. March 2001, 68(2): 348–350.
doi: https://doi.org/10.1115/1.1352064
Topics:
Fourier transforms
,
Mach number
,
Stress
,
Pavement live loads
,
Elasticity
,
Theorems (Mathematics)
An Analytic Algorithm of Stresses for Any Double Hole Problem in Plane Elastostatics
J. Appl. Mech. March 2001, 68(2): 350–353.
doi: https://doi.org/10.1115/1.1352065
Topics:
Algorithms
,
Stress
,
Stress analysis (Engineering)
The Rotating Tautochrone
J. Appl. Mech. March 2001, 68(2): 353–356.
doi: https://doi.org/10.1115/1.1352066
Topics:
Angular momentum
,
Differential equations
,
Wire
Smooth Asymmetric Two-Dimensional Indentation of a Finite Elastic Beam
J. Appl. Mech. March 2001, 68(2): 357–360.
doi: https://doi.org/10.1115/1.1352068
Topics:
Displacement
,
Elasticity
,
Stress
,
Euler-Bernoulli beam theory
,
Rotation
Email alerts
RSS Feeds
Radial Deflection of Ring-Stiffened Cylinders Under Hydrostatic Pressure
J. Appl. Mech (December 2024)
Why biological cells can't stay spherical?
J. Appl. Mech