Graphical Abstract Figure

Impedance method in finite chain comprising two types of lattices with a interface. (a) Super Cell model, equivalent Interface model, and Unit Cell model. (b) Complex band structures of AB and CD unit cells. (c) Impedances of common nodes at the interface. (D) Eigenfrequencies of the super cell model.

Graphical Abstract Figure

Impedance method in finite chain comprising two types of lattices with a interface. (a) Super Cell model, equivalent Interface model, and Unit Cell model. (b) Complex band structures of AB and CD unit cells. (c) Impedances of common nodes at the interface. (D) Eigenfrequencies of the super cell model.

Close modal

Abstract

Interface states and edge states in periodic structures have been extensively investigated in the context of topological dynamics over the past decades. In this study, we propose an impedance method based on surface impedance to analyze interface and edge states in one-dimensional (1D) periodic chains. The impedances are defined analytically from the Bloch eigen-modes of the periodic chains. At the interface between two periodic structures, interface states arise at the frequencies where the impedances of the two structures become the same. Likewise, edge states occur when the impedance of the structure matches the boundary impedance. This approach is universal for studying trivial and topological interface and edge states in 1D chain with different types of boundary conditions. We demonstrate this point with three representative examples: a chain comprising two periodic lattices, a chain anchored to ground springs at both ends, and a symmetric chain with interfacial defects. The analysis of topological interface states offers a vivid physical perspective, revealing that the topological interface states are either symmetric or antisymmetric modes. Furthermore, we show that the frequency of the symmetric topological state can be tuned via a single spring at the interface. This finding can be used to design tunable topological devices.

References

1.
Achenbach
,
J. D. D.
, and
Thau
,
S. A.
,
1974
, “
Wave Propagation in Elastic Solids
,”
ASME J. Appl. Mech.
,
16
(
2
), pp.
262
325
.
2.
Aono
,
T.
, and
Tamura
,
S.
,
1998
, “
Surface and Pseudosurface Acoustic Waves in Superlattices
,”
Phys. Rev. B
,
58
(
8
), pp.
4838
4845
.
3.
Polo
,
J. A.
, and
Lakhtakia
,
A.
,
2011
, “
Surface Electromagnetic Waves: A Review
,”
Laser Photonics Rev.
,
5
(
2
), pp.
234
246
.
4.
Zhou
,
X. M.
,
Badreddine Assouar
,
M.
, and
Oudich
,
M.
,
2014
, “
Subwavelength Acoustic Focusing by Surface-Wave-Resonance Enhanced Transmission in Doubly Negative Acoustic Metamaterials
,”
J. Appl. Phys.
,
116
(
19
), p.
194501
.
5.
Zhao
,
Y. C.
,
Zhou
,
X. M.
, and
Huang
,
G. L.
,
2020
, “
Non-Reciprocal Rayleigh Waves in Elastic Gyroscopic Medium
,”
J. Mech. Phys. Solids
,
143
, p.
104065
.
6.
Wei
,
Y.
,
Chen
,
Y.
,
Cheng
,
W.
,
Liu
,
X. N.
, and
Hu
,
G. K.
,
2024
, “
Rayleigh Surface Waves of Extremal Elastic Materials
,”
J. Mech. Phys. Solids
,
193
, p.
105842
.
7.
Al Ba’ba’a
,
H. B.
,
Willey
,
C. L.
,
Chen
,
V. W.
,
Juhl
,
A. T.
, and
Nouh
,
M.
,
2022
, “
Theory of Truncation Resonances in Continuum Rod-Based Phononic Crystals With Generally Asymmetric Unit Cells
,”
Adv. Theory Simul.
,
6
, p.
253265314
.
8.
Zhang
,
Q.
,
Chen
,
Y.
,
Zhang
,
K.
, and
Hu
,
G. K.
,
2020
, “
Dirac Degeneracy and Elastic Topological Valley Modes Induced by Local Resonant States
,”
Phys. Rev. B
,
101
(
1
), p.
014101
.
9.
Huang
,
X. Q.
,
Xiao
,
M.
,
Zhang
,
Z. Q.
, and
Chan
,
C. T.
,
2014
, “
Sufficient Condition for the Existence of Interface States in Some Two-Dimensional Photonic Crystals
,”
Phys. Rev. B
,
90
(
7
), p.
075423
.
10.
Bai
,
R. B.
, and
Suo
,
Z. G.
,
2015
, “
Optomechanics of Soft Materials
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071011
.
11.
Zhang
,
T.
, and
Gao
,
H. J.
,
2015
, “
Toughening Graphene With Topological Defects: A Perspective
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051001
.
12.
Zhang
,
Q.
,
Cherkasov
,
A. V.
,
Arora
,
N.
,
Hu
,
G. K.
, and
Rudykh
,
S.
,
2023
, “
Magnetic Field-Induced Asymmetric Mechanical Metamaterials
,”
Extreme Mech. Lett.
,
59
, p.
101957
.
13.
Hasan
,
M. Z.
, and
Kane
,
C. L.
,
2010
, “
Colloquium: Topological Insulators
,”
Rev. Mod. Phys.
,
82
(
4
), pp.
3045
3067
.
14.
Zhen
,
B.
,
Hsu
,
C. W.
,
Lu
,
L.
,
Stone
,
A. D.
, and
Soljačić
,
M.
,
2014
, “
Topological Nature of Optical Bound States in the Continuum
,”
Phys. Rev. Lett.
,
113
(
25
), p.
257401
.
15.
Mousavi
,
S. H.
,
Khanikaev
,
A. B.
, and
Wang
,
Z.
,
2015
, “
Topologically Protected Elastic Waves in Phononic Metamaterials
,”
Nat. Commun.
,
6
(
1
), p.
8682
.
16.
Huber
,
S. D.
,
2016
, “
Topological Mechanics
,”
Nat. Phys.
,
12
(
7
), pp.
621
623
.
17.
Inoue
,
T.
, and
Murakami
,
S.
,
2019
, “
Topological Band Structure of Surface Acoustic Waves on a Periodically Corrugated Surface
,”
Phys. Rev. B
,
99
(
19
), p.
195443
.
18.
Chen
,
H.
,
Zhang
,
H. K.
,
Wu
,
Q.
,
Huang
,
Y.
,
Nguyen
,
H.
,
Prodan
,
E.
,
Zhou
,
X. M.
, and
Huang
,
G. L.
,
2021
, “
Creating Synthetic Spaces for Higher-Order Topological Sound Transport
,”
Nat. Commun.
,
12
(
1
), p.
5028
.
19.
Sun
,
K.
,
Souslov
,
A.
,
Mao
,
X. M.
, and
Lubensky
,
T. C.
,
2012
, “
Surface Phonons, Elastic Response, and Conformal Invariance in Twisted Kagome Lattices
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
31
), pp.
12369
12374
.
20.
Chen
,
Y.
,
Mcinerney
,
J. P.
,
Krause
,
P. N.
,
Schneider
,
J. L. G.
,
Wegener
,
M.
, and
Mao
,
X. M.
,
2025
, “
Observation of Floppy Flexural Modes in a 3D Polarized Maxwell Beam
,”
Phys. Rev. Lett.
,
134
(
8
), p.
086101
.
21.
Wang
,
A. X.
,
Zhou
,
Y.
, and
Chen
,
C. Q.
,
2023
, “
Topological Mechanics Beyond Wave Dynamics
,”
J. Mech. Phys. Solids
,
173
, p.
105197
.
22.
Singhal
,
A.
,
2025
, “
Surface Effects Study: A Continuum Approach From Fundamental Modes to Higher Modes and Topological Polarization in Orthotropic Piezoelectric Materials
,”
ASME J. Appl. Mech.
,
92
(
1
), p.
011008
.
23.
Zhu
,
R.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031006
.
24.
Xiao
,
M.
,
Ma
,
G. C.
,
Yang
,
Z. Y.
,
Sheng
,
P.
,
Zhang
,
Z. Q.
, and
Chan
,
C. T.
,
2015
, “
Geometric Phase and Band Inversion in Periodic Acoustic Systems
,”
Nat. Phys.
,
11
(
3
), pp.
240
244
.
25.
Chen
,
Y.
,
Liu
,
X. N.
, and
Hu
,
G. K.
,
2019
, “
Topological Phase Transition in Mechanical Honeycomb Lattice
,”
J. Mech. Phys. Solids
,
122
, pp.
54
68
.
26.
He
,
Y.
, and
Chien
,
C. C.
,
2020
, “
Non-Hermitian Generalizations of Extended Su–Schrieffer–Heeger Models
,”
J. Phys. Condens. Matter
,
33
(
8
), p.
085501
.
27.
Boudouti
,
E. H. E.
,
Rouhani
,
B. D.
,
Akjouj
,
A.
, and
Dobrzynski
,
L.
,
1996
, “
Theory of Surface and Interface Transverse Elastic Waves in N-Layer Superlattices
,”
Phys. Rev. B
,
54
(
20
), pp.
14728
14741
.
28.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2007
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Design
,”
J. Sound Vib.
,
307
(
3–5
), pp.
865
893
.
29.
Ammari
,
H.
,
Davies
,
B.
, and
Hiltunen
,
E. O.
,
2022
, “
Robust Edge Modes in Dislocated Systems of Subwavelength Resonators
,”
J. London Math. Soc.
,
106
(
3
), pp.
2075
2135
.
30.
Rosa
,
M. I. N.
,
Davis
,
B. L.
,
Liu
,
L.
,
Ruzzene
,
M.
, and
Hussein
,
M. I.
,
2023
, “
Material vs. Structure: Topological Origins of Band-Gap Truncation Resonances in Periodic Structures
,”
Phys. Rev. Mater.
,
7
(
12
), p.
124201
.
31.
Wallis
,
R. F.
,
1957
, “
Effect of Free Ends on the Vibration Frequencies of One-Dimensional Lattices
,”
Phys. Rev.
,
105
(
2
), pp.
540
545
.
32.
Rutherford
,
D.
,
1948
, “
XXV. Some Continuant Determinants Arising in Physics and Chemistry
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
,
62
(
3
), pp.
229
236
.
33.
Puszkarski
,
H.
,
1983
, “
Effect of Surface Parameter on Interband Surface Mode Frequencies of Finite Diatomic Chain
,”
Physica B + C
,
115
(
3
), pp.
367
375
.
34.
Al Ba'ba'a
,
H.
,
Nouh
,
M.
, and
Singh
,
T.
,
2019
, “
Dispersion and Topological Characteristics of Permutative Polyatomic Phononic Crystals
,”
Proc. R. Soc. A
,
475
(
2226
), p.
20190022
.
35.
Da-Fonseca
,
C. M.
,
2007
, “
The Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices
,”
Appl. Math. Sci.
,
1
, pp.
59
67
.
36.
Bastawrous
,
M. V.
, and
Hussein
,
M. I.
,
2022
, “
Closed-Form Existence Conditions for Bandgap Resonances in a Finite Periodic Chain Under General Boundary Conditions
,”
J. Acoust. Soc. Am.
,
151
(
1
), pp.
286
298
.
37.
Sun
,
Y. M.
,
Xing
,
J. C.
,
Shao
,
L. H.
, and
Wang
,
J. X.
,
2025
, “
The Topological Dynamics of Continuum Lattice Grid Structures
,”
J. Mech. Phys. Solids
,
194
, p.
105935
.
38.
Chen
,
Y.
,
Schneider
,
J. L. G.
,
Wang
,
K.
,
Scott
,
P.
,
Kalt
,
S.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2024
, “
Anomalous Frozen Evanescent Phonons
,”
Nat. Commun.
,
15
(
1
), p.
8882
.
39.
Willis
,
J. R.
,
2016
, “
Negative Refraction in a Laminate
,”
J. Mech. Phys. Solids
,
97
, pp.
10
18
.
40.
Mokhtari
,
A. A.
,
Lu
,
Y.
,
Zhou
,
Q.
,
Amirkhizi
,
A. V.
, and
Srivastava
,
A.
,
2020
, “
Scattering of In-Plane Elastic Waves at Metamaterial Interfaces
,”
Int. J. Eng. Sci.
,
150
, p.
103278
.
41.
Lawrence
,
F. J.
,
Botten
,
L. C.
,
Dossou
,
K. B.
,
De Sterke
,
C. M.
, and
Mcphedran
,
R. C.
,
2009
, “
Impedance of Square and Triangular Lattice Photonic Crystals
,”
Phys. Rev. A
,
80
(
2
), p.
023826
.
42.
Lawrence
,
F. J.
,
Botten
,
L. C.
,
Dossou
,
K. B.
,
Mcphedran
,
R. C.
, and
de Sterke
,
D. M. C.
,
2010
, “
Photonic-Crystal Surface Modes Found From Impedances
,”
Phys. Rev. A
,
82
(
5
), p.
053840
.
43.
Xiao
,
M.
,
Zhang
,
Z. Q.
, and
Chan
,
C. T.
,
2014
, “
Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems
,”
Phys. Rev. X
,
4
(
2
), p.
021017
.
44.
Gao
,
W. S.
,
Xiao
,
M.
,
Chen
,
B. J.
,
Pun
,
E. Y. B.
,
Chan
,
C. T.
, and
Tam
,
W. Y.
,
2017
, “
Controlling Interface States in 1D Photonic Crystals by Tuning Bulk Geometric Phases
,”
Opt. Lett.
,
42
(
8
), p.
287737
.
45.
Groß
,
M. F.
,
Schneider
,
J. L. G.
,
Wei
,
Y.
,
Chen
,
Y.
,
Kalt
,
S.
,
Kadic
,
M.
,
Liu
,
X. N.
,
Hu
,
G. K.
, and
Wegener
,
M.
,
2023
, “
Tetramode Metamaterials as Phonon Polarizers
,”
Adv. Mater.
,
35
(
18
), p.
2211801
.
46.
Chen
,
Y.
,
Liu
,
X. N.
, and
Hu
,
G. K.
,
2016
, “
Design of Arbitrary Shaped Pentamode Acoustic Cloak Based on Quasi-Symmetric Mapping Gradient Algorithm
,”
J. Acoust. Soc. Am.
,
140
(
5
), pp.
405
409
.
47.
Chang
,
Z.
,
Guo
,
D. K.
,
Feng
,
X. Q.
, and
Hu
,
G. K.
,
2014
, “
A Facile Method to Realize Perfectly Matched Layers for Elastic Waves
,”
Wave Motion
,
51
(
7
), pp.
1170
1178
.
48.
Sengsri
,
P.
, and
Kaewunruen
,
S.
,
2020
, “
Additive Manufacturing Meta-Functional Composites for Engineered Bridge Bearings: A Review
,”
Constr. Build. Mater.
,
262
, p.
120535
.
49.
Allein
,
F.
,
Anastasiadis
,
A.
,
Chaunsali
,
R.
,
Frankel
,
I.
,
Boechler
,
N.
,
Diakonos
,
F. K.
, and
Theocharis
,
G.
,
2023
, “
Strain Topological Metamaterials and Revealing Hidden Topology in Higher-Order Coordinates
,”
Nat. Commun.
,
14
(
1
), p.
6633
.
50.
Chen
,
H.
,
Nassar
,
H.
, and
Huang
,
G. L.
,
2018
, “
A Study of Topological Effects in 1D and 2D Mechanical Lattices
,”
J. Mech. Phys. Solids
,
117
, pp.
22
36
.
51.
Zhang
,
Q.
, and
Rudykh
,
S.
,
2025
, “
Topological State Switches in Hard-Magnetic Meta-Structures
,”
J. Mech. Phys. Solids
,
196
, p.
106001
.
52.
Shi
,
S.
,
Xu
,
B.
,
Zhang
,
K.
,
Ye
,
G. S.
,
Xiang
,
D. S.
,
Liu
,
Y. B.
,
Wang
,
J. Z.
,
Su
,
D. Q.
, and
Li
,
L.
,
2022
, “
High-Fidelity Photonic Quantum Logic Gate Based on Near-Optimal Rydberg Single-Photon Source
,”
Nat. Commun.
,
13
(
1
), p.
4454
.
53.
Prasad
,
R.
, and
Sarkar
,
A.
,
2019
, “
Broadband Vibration Isolation for Rods and Beams Using Periodic Structure Theory
,”
ASME J. Appl. Mech.
,
86
(
2
), p.
021004
.
54.
Akbari-Farahani
,
F.
, and
Ebrahimi-Nejad
,
S.
,
2024
, “
From Defect Mode to Topological Metamaterials: A State-of-the-Art Review of Phononic Crystals & Acoustic Metamaterials for Energy Harvesting
,”
Sens. Actuators, A
,
365
, p.
114871
.
55.
Liu
,
H.
,
Zhang
,
Q.
,
Zhang
,
K.
,
Hu
,
G. K.
, and
Duan
,
H. L.
,
2019
, “
Designing 3D Digital Metamaterial for Elastic Waves: From Elastic Wave Polarizer to Vibration Control
,”
Adv. Sci.
,
6
(
16
), p.
1900401
.
56.
You
,
J. W.
,
Ma
,
Q.
,
Lan
,
Z. H.
,
Xiao
,
Q.
,
Panoiu
,
N. C.
, and
Cui
,
T. J.
,
2021
, “
Reprogrammable Plasmonic Topological Insulators With Ultrafast Control
,”
Nat. Commun.
,
12
(
1
), p.
5468
.
57.
Assi
,
D. S.
,
Huang
,
H. L.
,
Karthikeyan
,
V.
,
Theja
,
V. C. S.
,
De Souza
,
M. M.
,
Xi
,
N.
,
Li
,
W. J.
, and
Roy
,
V. A.
,
2023
, “
Quantum Topological Neuristors for Advanced Neuromorphic Intelligent Systems
,”
Adv. Sci.
,
10
(
24
), p.
2300791
.
You do not currently have access to this content.