Graphical Abstract Figure

(a) Elongated, bi-wing hydraulic fracture of length 2(t) “tunneling” in a layer of height 2b, b, driven by fluid injection with cumulative volume 2V(t). (b and c) Relocated micro-seismicity in the top and side (EW) views during Stage 3 hydraulic fracturing injection in vertical well 21-10 in Carthage Cotton Valley Gas Field, Texas (modified after Refs. [11,12]). Microseismicity is shown by opaque dots, such that darker parts of the micro-seismicity “cloud” correspond to higher spatial density of events. Microseismicity, which is induced on natural fractures along the path of the propagating hydraulic fracture, highlights the east wing of an elongated hydraulic fracture with aspect ratio b/1/8 (c), aligned in the direction N80E of the maximum regional horizontal stress [17] (b). Lack of observed micro-seismicity to the west of the injection well can be due to a distant (eastward) location of the two observation wells in this study; thus, a symmetric bi-wing fracture is assumed here. Rectangle in (c) shows the inferred fracture footprint. Perforated well interval over which the fluid injection took place is shown by a thick blue line in (c).

Graphical Abstract Figure

(a) Elongated, bi-wing hydraulic fracture of length 2(t) “tunneling” in a layer of height 2b, b, driven by fluid injection with cumulative volume 2V(t). (b and c) Relocated micro-seismicity in the top and side (EW) views during Stage 3 hydraulic fracturing injection in vertical well 21-10 in Carthage Cotton Valley Gas Field, Texas (modified after Refs. [11,12]). Microseismicity is shown by opaque dots, such that darker parts of the micro-seismicity “cloud” correspond to higher spatial density of events. Microseismicity, which is induced on natural fractures along the path of the propagating hydraulic fracture, highlights the east wing of an elongated hydraulic fracture with aspect ratio b/1/8 (c), aligned in the direction N80E of the maximum regional horizontal stress [17] (b). Lack of observed micro-seismicity to the west of the injection well can be due to a distant (eastward) location of the two observation wells in this study; thus, a symmetric bi-wing fracture is assumed here. Rectangle in (c) shows the inferred fracture footprint. Perforated well interval over which the fluid injection took place is shown by a thick blue line in (c).

Close modal

Abstract

This article studies the effect of the rock fracture toughness on the propagation of elongated fluid-driven fractures. We use the “tough PKN” model (Sarvaramini and Garagash, 2015, “Breakdown of a Pressurized Finger-Like Crack in a Permeable Rock,” J. Appl. Mech., 82(6), p. 061006), an extension of the classical PKN model (Perkins and Kern, 1961, “Widths of Hydraulic Fractures,” J. Pet. Tech., 222, pp. 937–949; Nordgren, 1972, “Propagation of Vertical Hydraulic Fractures,” J. Pet. Tech., 253, pp. 306–314), which allows for a nonzero energy release rate into the advancing fracture front(s). We provide a self-consistent analysis of a “tough” elongated fracture driven by arbitrary fluid injection law under the assumption of the negligible fluid leak-off. We use scaling considerations to identify the nondimensional parameters governing the propagation regimes and their succession in time, provide a number of analytical solutions in the limiting regimes for an arbitrary power-law injection, and also posit a simplified, equation-of-motion, approach to solve a general elongated fracture propagation problem during the injection and shut-in periods. Finally, we use the developed solutions for a tough elongated fracture to surmise the relative importance of the viscous- and toughness-related dissipation on the fracture dynamics and broach the implications of the possible toughness scale dependence.

References

1.
Perkins
,
T. K.
, and
Kern
,
L. R.
,
1961
, “
Widths of Hydraulic Fractures
,”
J. Pet. Tech., Trans. AIME
,
13
(
09
), pp.
937
949
.
2.
Nordgren
,
R. P.
,
1972
, “
Propagation of Vertical Hydraulic Fractures
,”
J. Pet. Tech.
,
253
, pp.
306
314
.
3.
Adachi
,
J.
,
Siebrits
,
E.
,
Peirce
,
A.
, and
Desroches
,
J.
,
2006
, “
Computer Simulation of Hydraulic Fractures
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
5
), pp.
739
757
.
4.
Pollard
,
D. D.
, and
Aydin
,
A.
,
1988
, “
Progress in Understanding Joints Over the Last Century
,”
Geol. Soc. Am. Bull.
,
100
, pp.
1181
1204
.
5.
Rubin
,
A.
, and
Pollard
,
D.
,
1987
, “
Origins of Blade-Like Dikes in Volcanic Rift Zones
,”
US Geol. Survey Professional Paper
,
1350
(
2
), pp.
1449
1470
.
6.
Rivalta
,
E.
,
Taisne
,
B.
,
Bunger
,
A.
, and
Katz
,
R.
,
2015
, “
A Review of Mechanical Models of Dike Propagation: Schools of Thought, Results and Future Directions
,”
Tectonophysics
,
638
, pp.
1
42
.
7.
Garagash
,
D.
, and
Germanovich
,
L.
,
2014
, “Gravity Driven Hydraulic Fracture With Finite Breadth,”
Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, Oct. 1–3, 2014
,
A.
Bajaj
,
P.
Zavattieri
,
M.
Koslowski
,
T.
Siegmund
, eds.,
Purdue University Libraries Scholarly Publishing Services
,
West Lafayette
.
8.
Garagash
,
D. I.
, and
Germanovich
,
L. N.
,
2022
, “
Notes on Propagation of 3D Buoyant Fluid-Driven Cracks
,”
arXiv
.
9.
Davis
,
T.
,
Rivalta
,
E.
, and
Dahm
,
T.
,
2020
, “
Critical Fluid Injection Volumes for Uncontrolled Fracture Ascent
,”
Geophys. Res. Lett.
,
47
(
14
), p.
e2020GL087774
.
10.
Möri
,
A.
, and
Lecampion
,
B.
,
2022
, “
Three-Dimensional Buoyant Hydraulic Fractures: Constant Release From a Point Source
,”
J. Fluid Mech.
,
950
, p.
A12
.
11.
Rutledge
,
J. T.
,
Phillips
,
W. S.
, and
Mayerhofer
,
M. J.
,
2004
, “
Faulting Induced by Forced Fluid Injection and Fluid Flow Forced by Faulting: An Interpretation of Hydraulic-Fracture Microseismicity, Carthage Cotton Valley Gas Field, Texas
,”
Bull. Seismol. Soc. Am.
,
94
(
5
), pp.
1817
1830
.
12.
Mayerhofer
,
M. J.
,
Walker
,
R. N.
,
Urbancic
,
T.
, and
Rutledge
,
J. T.
,
2000
, “
East Texas Hydraulic Fracture Imaging Project: Measuring Hydraulic Fracture Growth of Conventional Sandfracs and Waterfracs
,” Proceedings of the 2000 Society of Petroleum Engineers Annual Technical Conference, SPE, Paper No. 63034, pp.
1
12
.
13.
Adachi
,
J. I.
,
Detournay
,
E.
, and
Peirce
,
A. P.
,
2010
, “
Analysis of the Classical Pseudo-3D Model for Hydraulic Fracture With Equilibrium Height Growth Across Stress Barriers
,”
Int. J. Rock Mech. Mining Sci.
,
47
(
4
), pp.
625
639
.
14.
Möri
,
A.
,
Peruzzo
,
C.
,
Garagash
,
D.
, and
Lecampion
,
B.
,
2024
, “
How Stress Barriers and Fracture Toughness Heterogeneities Arrest Buoyant Hydraulic Fractures
,”
Rock Mech. Rock Eng.
15.
Lister
,
J. R.
,
1990
, “
Buoyancy-Driven Fluid Fracture: Similarity Solutions for the Horizontal and Vertical Propagation of Fluid-Filled Cracks
,”
J. Fluid Mech.
,
217
, pp.
213
239
.
16.
Townsend
,
M. R.
,
Pollard
,
D. D.
, and
Smith
,
R. P.
,
2017
, “
Mechanical Models for Dikes: A Third School of Thought
,”
Tectonophysics
,
703
, pp.
98
118
.
17.
Laubach
,
S.
, and
Monson
,
E.
,
1988
, “
Coring-Induced Fractures: Indicators of Hydraulic Fracture Propagation in a Naturally Fractured Reservoir
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 2–5
, p. 18164, OnePetro.
18.
Sarvaramini
,
E.
, and
Garagash
,
D. I.
,
2015
, “
Breakdown of a Pressurized Finger-Like Crack in a Permeable Rock
,”
ASME J. Appl. Mech.
,
82
(
6
), p.
061006
.
19.
Kemp
,
L. F.
,
1990
, “
Study of Nordgren’s Equation of Hydraulic Fracturing
,”
SPE Prod. Eng.
,
5
(
03
), pp.
311
314
.
20.
Kovalyshen
,
Y.
, and
Detournay
,
E.
,
2010
, “
A Reexamination of the Classical PKN Model of Hydraulic Fracture
,”
Transp. Porous Media
,
81
, pp.
317
339
.
21.
Mishuris
,
G.
,
Wrobel
,
M.
, and
Linkov
,
A.
,
2012
, “
On Modeling Hydraulic Fracture in Proper Variables: Stiffness, Accuracy, Sensitivity
,”
Int. J. Eng. Sci.
,
61
, pp.
10
23
.
22.
Wrobel
,
M.
, and
Mishuris
,
G.
,
2015
, “
Hydraulic Fracture Revisited: Particle Velocity Based Simulation
,”
Int. J. Eng. Sci.
,
94
, pp.
23
58
.
23.
Adachi
,
J. I.
, and
Peirce
,
A. P.
,
2008
, “
Asymptotic Analysis of an Elasticity Equation for a Finger-Like Hydraulic Fracture
,”
J. Elast.
,
90
, pp.
43
69
.
24.
Dontsov
,
E.
, and
Peirce
,
A.
,
2016
, “
Comparison of Toughness Propagation Criteria for Blade-Like and Pseudo-3D Hydraulic Fractures
,”
Eng. Fract. Mech.
,
160
, pp.
238
247
.
25.
Peruzzo
,
C.
,
2023
, “
Three-Dimensional Hydraulic Fracture Propagation in Homogeneous and Heterogeneous Media
,” Thesis #10105,
EPFL
,
Lausanne
.
26.
Nolte
,
K. G.
,
1991
, “
Fracturing-Pressure Analysis for Nonideal Behavior (SPE 20704)
,”
J. Pet. Tech.
,
43
(
2
), pp.
210
218
.
27.
Peruzzo
,
C.
, and
Lecampion
,
B.
,
2024
, “
How Contained Hydraulic Fractures Emerge From Layers of Alternating Fracture Toughness
,” 85th EAGE Annual Conference & Exhibition (Including the Workshop Programme), Vol. 2024,
European Association of Geoscientists & Engineers
, Paper No. 1, pp.
1
5
.
28.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
29.
Weng
,
H.
, and
Ampuero
,
J.-P.
,
2019
, “
The Dynamics of Elongated Earthquake Ruptures
,”
J. Geophys. Res.: Solid Earth
,
124
(
8
), pp.
8584
8610
.
30.
Chuprakov
,
D.
,
Izimov
,
R.
, and
Spesivtsev
,
P.
,
2017
, “
Continued Hydraulic Fracture Growth After Well Shut-In
,” 51st US Rock Mechanics/Geomechanics Symposium,
OnePetro
, Paper No. ARMA-2017-0144, pp.
1
17
.
31.
Dontsov
,
E.
,
2022
, “Analysis of a Constant Height Hydraulic Fracture,”
Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring
,
X.
Zhang
,
B.
Wu
,
D.
Yang
, and
A.
Bunger
, eds.,
Wiley
,
New Jersey
, pp.
127
139
.
32.
Dontsov
,
E.
,
2022
, “
Analysis of a Constant Height Hydraulic Fracture Driven by a Power-Law Fluid
,”
Rock Mech. Bull.
,
1
(
1
), p.
100003
.
33.
Liu
,
D.
,
Lecampion
,
B.
, and
Garagash
,
D. I.
,
2019
, “
Propagation of a Fluid-Driven Fracture With Fracture Length Dependent Apparent Toughness
,”
Eng. Fract. Mech.
,
220
, p.
106616
.
34.
Delaney
,
P. T.
,
Pollard
,
D. D.
,
Ziony
,
J. I.
, and
McKee
,
E. H.
,
1986
, “
Field Relations Between Dikes and Joints: Emplacement Processes and Paleostress Analysis
,”
J. Geophys. Res.: Solid Earth
,
91
(
B5
), pp.
4920
4938
.
35.
Warpinski
,
N.
,
Lorenz
,
J.
,
Branagan
,
P.
,
Myal
,
F.
, and
Gall
,
B.
,
1993
, “
Examination of a Cored Hydraulic Fracture in a Deep Gas Well
,”
SPE Prod. Facil.
,
8
(
03
), pp.
150
158
.
36.
Scholz
,
C. H.
,
2010
, “
A Note on the Scaling Relations for Opening Mode Fractures in Rock
,”
J. Struct. Geol.
,
32
, pp.
1485
1487
.
37.
Shlyapobersky
,
J.
,
1985
, “
Energy Analysis of Hydraulic Fracturing
,”
26th US Symposium on Rock Mechanics
,
Rapid City, SD
,
June 26-28
.
38.
Warpinski
,
N.
,
Branagan
,
P.
,
Peterson
,
R.
, and
Wolhart
,
S.
,
1998
, “
An Interpretation of M-Site Hydraulic Fracture Diagnostic Results
,”
SPE Rocky Mountain Regional/Low- Permeability Reservoirs Symposium and Exhibition
,
Denver, CO
,
Apr. 5–8
.
39.
Schmidt
,
R.
, and
Huddle
,
C.
,
1977
, “
Effect of Confining Pressure on Fracture Toughness of Indiana Limestone
,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 14,
Elsevier
, Paper No. 5-6, pp.
289
293
.
40.
Nara
,
Y.
,
Morimoto
,
K.
,
Hiroyoshi
,
N.
,
Yoneda
,
T.
,
Kaneko
,
K.
, and
Benson
,
P. M.
,
2012
, “
Influence of Relative Humidity on Fracture Toughness of Rock: Implications for Subcritical Crack Growth
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2471
2481
.
41.
Chandler
,
M. R.
,
Meredith
,
P. G.
,
Brantut
,
N.
, and
Crawford
,
B. R.
,
2016
, “
Fracture Toughness Anisotropy in Shale
,”
J. Geophys. Res.: Solid Earth
,
121
(
3
), pp.
1706
1729
.
42.
Noël
,
C.
,
Baud
,
P.
, and
Violay
,
M.
,
2021
, “
Effect of Water on Sandstone’s Fracture Toughness and Frictional Parameters: Brittle Strength Constraints
,”
Int. J. Rock Mech. Min. Sci.
,
147
, p.
104916
.
43.
Morel
,
S.
,
Bouchaud
,
E.
,
Schmittbuhl
,
J.
, and
Valentin
,
G.
,
2002
, “
R-curve Behavior and Roughness Development of Fracture Surfaces
,”
Int. J. Fract.
,
114
, pp.
307
325
.
44.
Lopez
,
J. M.
, and
Schmittbuhl
,
J.
,
1998
, “
Anomalous Scaling of Fracture Surfaces
,”
Phys. Rev. E
,
57
(
6
), p.
6405
.
45.
Liu
,
D.
, and
Lecampion
,
B.
,
2022
, “
Laboratory Investigation of Hydraulic Fracture Growth in Zimbabwe Gabbro
,”
J. Geophys. Res.: Solid Earth
,
127
(
11
), p.
e2022JB025678
.
46.
Garagash
,
D. I.
,
2006
, “
Plane Strain Propagation of a Fluid-Driven Fracture During Injection and Shut-In: Asymptotics of Large Toughness
,”
Eng. Fract. Mech.
,
73
, pp.
456
481
.
47.
Garagash
,
D. I.
,
2019
, “
Cohesive-Zone Effects in Hydraulic Fracture Propagation
,”
J. Mech. Phys. Solids
,
133
, p.
103727
.
48.
Dontsov
,
E. V.
,
2016
, “
An Approximate Solution for a Penny-Shaped Hydraulic Fracture that Accounts for Fracture Toughness, Fluid Viscosity and Leak-Off
,”
R. Soc. Open Sci.
,
3
, p.
160737
.
49.
Dontsov
,
E. V.
,
2017
, “
An Approximate Solution for a Plane Strain Hydraulic Fracture that Accounts for Fracture Toughness, Fluid Viscosity, and Leak-Off
,”
Int. J. Fract.
,
205
(
2
), pp.
221
237
.
50.
Garagash
,
D. I.
,
2022
, “
Notes on Hydraulic Fracture Mechanics
,”
arXiv
.
51.
Abramowitz
,
M.
., and
Stegun
,
I.
, eds.,
1972
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,
Dover Publications Inc.
,
New York
.
52.
Garagash
,
D. I.
,
2009
, “Scaling of Physical Processes in Fluid-Driven Fracture: Perspective From the Tip,”
IUTAM Symposium on Scaling in Solid Mechanics
,
F.
Borodich
, ed.,
Springer
,
Berlin
, pp.
91
100
.
53.
Garagash
,
D. I.
,
Detournay
,
E.
, and
Adachi
,
J. I.
,
2011
, “
Multiscale Tip Asymptotics in Hydraulic Fracture With Leak-Off
,”
J. Fluid Mech.
,
669
, pp.
260
297
.
54.
Detournay
,
E.
,
2016
, “
Mechanics of Hydraulic Fractures
,”
Annu. Rev. Fluid Mech.
,
48
, pp.
311
339
.
You do not currently have access to this content.