Abstract

This work presents the dynamic modeling and analysis of an electric field vulnerable morpho-elastic biological membranes. Such smart membranes combine electrical properties with active functionalities, creating flexible and responsive surfaces. A continuum physics-based electro-morpho-elastic model is developed to predict the dynamic response of the smart membrane and interrogate the impact of isotropic and anisotropic growth along with fiber orientations at different prestretches. The governing equation of motion for the membrane dynamics is derived by applying Newton’s second law. The findings of the model solutions offer an understanding of how the DC and AC dynamic actuation modes modify the nonlinear behavior of membranes. The free and forced vibrations are illustrated using the Poincaré map, phase diagrams, and time-history response. Notably, the steady oscillation around the stable equilibrium stretch, whose magnitude decreases with the enrichment in membrane anisotropy and fiber orientation, decreases with anisotropic growth. Additionally, the system energy rises with the anisotropy parameter and shifts from isotropic to anisotropic growth, decreasing with greater fiber orientation.

References

1.
Kapitaniak
,
T.
, and
Jafari
,
S.
,
2018
,
Nonlinear Effects in Life Sciences
.
2.
Fatoyinbo
,
H. O.
,
Brown
,
R. G.
,
Simpson
,
D. J.
, and
van Brunt
,
B.
,
2020
, “
Numerical Bifurcation Analysis of Pacemaker Dynamics in a Model of Smooth Muscle Cells
,”
Bull. Math. Biol.
,
82
(
7
), p.
95
.
3.
Cheffer
,
A.
, and
Savi
,
M. A.
,
2020
, “
Random Effects Inducing Heart Pathological Dynamics: An Approach Based on Mathematical Models
,”
Biosystems
,
196
, p.
104177
.
4.
Kirk
,
J.
,
1975
, “
A Theoretical Analysis of the Contribution of Algal Cells to the Attenuation of Light Within Natural Waters. I. General Treatment of Suspensions of Pigmented Cells
,”
New Phytol.
,
75
(
1
), pp.
11
20
.
5.
Alvarez
,
O.
, and
Latorre
,
R.
,
1978
, “
Voltage-Dependent Capacitance in Lipid Bilayers Made From Monolayers
,”
Biophys. J.
,
21
(
1
), pp.
1
17
.
6.
Montal
,
M.
, and
Mueller
,
P.
,
1972
, “
Formation of Bimolecular Membranes From Lipid Monolayers and a Study of Their Electrical Properties
,”
Proc. Natl. Acad. Sci. USA
,
69
(
12
), pp.
3561
3566
.
7.
Blatt
,
F.
,
1982
, “
Elastic Energy Stored in a Membrane Due to Electrostriction
,”
J. Biol. Phys.
,
10
(
4
), pp.
219
222
.
8.
Singh
,
S.
,
Krishnaswamy
,
J. A.
, and
Melnik
,
R.
,
2020
, “
Biological Cells and Coupled Electro-Mechanical Effects: The Role of Organelles, Microtubules, and Nonlocal Contributions
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103859
.
9.
Heimburg
,
T.
,
2012
, “
The Capacitance and Electromechanical Coupling of Lipid Membranes Close to Transitions: The Effect of Electrostriction
,”
Biophys. J.
,
103
(
5
), pp.
918
929
.
10.
Akinlaja
,
J.
, and
Sachs
,
F.
,
1998
, “
The Breakdown of Cell Membranes by Electrical and Mechanical Stress
,”
Biophys. J.
,
75
(
1
), pp.
247
254
.
11.
Zimmermann
,
U.
,
Pilwat
,
G.
, and
Riemann
,
F.
,
1974
, “
Dielectric Breakdown of Cell Membranes
,”
Biophys. J.
,
14
(
11
), pp.
881
899
.
12.
Eskandari
,
M.
, and
Kuhl
,
E.
,
2015
, “
Systems Biology and Mechanics of Growth
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
,
7
(
6
), pp.
401
412
.
13.
Goriely
,
A.
,
2017
,
The Mathematics and Mechanics of Biological Growth
, Vol.
45
,
Springer
.
14.
Rausch
,
M. K.
, and
Kuhl
,
E.
,
2014
, “
On the Mechanics of Growing Thin Biological Membranes
,”
J. Mech. Phys. Solids
,
63
, pp.
128
140
.
15.
Khalipina
,
D.
,
Kaga
,
Y.
,
Dacher
,
N.
, and
Chevalier
,
N. R.
,
2019
, “
Smooth Muscle Contractility Causes the Gut to Grow Anisotropically
,”
J. R. Soc. Interface
,
16
(
159
), p.
20190484
.
16.
Balbi
,
V.
, and
Ciarletta
,
P.
,
2013
, “
Morpho-Elasticity of Intestinal Villi
,”
J. R. Soc. Interface
,
10
(
82
), p.
20130109
.
17.
Durel
,
J. F.
, and
Nerurkar
,
N. L.
,
2020
, “
Mechanobiology of Vertebrate Gut Morphogenesis
,”
Curr. Opin. Genet. Dev.
,
63
, pp.
45
52
.
18.
Ackermann
,
J.
,
Cohen
,
P. J.
,
Alessandri
,
K.
,
Leonard
,
A.
,
Nassoy
,
P.
,
Joanny
,
J.-F.
, and
Amar
,
M. B.
,
2022
, “
Morpho-Elasticity of Human Pluripotent Stem Cell Cysts
,”
J. Mech. Phys. Solids
,
160
, p.
104778
.
19.
Chen
,
Y.-P.
,
Shao
,
Y.
,
Chen
,
P.-C.
,
Li
,
K.
,
Li
,
J.-Y.
,
Meng
,
J.
,
Lv
,
C.-L.
, et al.,
2023
, “
Substrate Nesting Guides Cyst Morphogenesis of Human Pluripotent Stem Cells Without 3D Extracellular Matrix Overlay
,”
Acta Biomater.
,
170
, pp.
519
531
.
20.
Behera
,
S. K.
,
Ranjan
,
R. A.
,
Kumar
,
D.
,
Sarangi
,
S.
, and
Bhattacharyya
,
R.
,
2023
, “
Dynamic Modelling and Analysis of a Biological Circular Membrane
,”
Int. J. Eng. Sci.
,
188
, p.
103864
.
21.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
22.
Mosgaard
,
L. D.
,
Zecchi
,
K. A.
, and
Heimburg
,
T.
,
2015
, “
Mechano-Capacitive Properties of Polarized Membranes
,”
Soft Matter
,
11
(
40
), pp.
7899
7910
.
23.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corporation
.
24.
Kumar
,
D.
,
Ghosh
,
S.
,
Roy
,
S.
, and
Santapuri
,
S.
,
2021
, “
Modeling and Analysis of an Electro-Pneumatic Braided Muscle Actuator
,”
J. Intell. Mater. Syst. Struct.
,
32
(
4
), pp.
399
409
.
25.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
,
Zurlo
,
G.
, and
Joglekar
,
M.
,
2022
, “
Taut Domains in Transversely Isotropic Electro-Magneto-Active Thin Membranes
,”
Int. J. Non-Linear Mech.
,
147
, p.
104228
.
26.
Kumar
,
D.
,
Sarangi
,
S.
, and
Bhattacharyya
,
R.
,
2020
, “
Universal Relations in Nonlinear Electro-Magneto-Elasticity
,”
Arch. Appl. Mech.
,
90
, pp.
7
1643
1657
.
27.
Horgan
,
C. O.
,
2015
, “
The Remarkable Gent Constitutive Model for Hyperelastic Materials
,”
Int. J. Non-Linear Mech.
,
68
, pp.
9
16
.
28.
Arya
,
K.
,
Kumar
,
D.
, and
Sarangi
,
S.
,
2022
, “
Free Radial Oscillations of an Actuated Cylindrical Tube
,”
Mech. Adv. Mater. Struct.
,
31
(
2
), pp.
1
11
.
29.
Kumar
,
D.
, and
Sarangi
,
S.
,
2019
, “
Electro-Magnetostriction Under Large Deformation: Modeling With Experimental Validation
,”
Mech. Mater.
,
128
, pp.
1
10
.
30.
Kuang
,
Z.-B.
,
2014
,
Theory of Electroelasticity
,
Springer
.
31.
Kumar
,
D.
,
Behera
,
S. K.
,
Arya
,
K.
, and
Sarangi
,
S.
,
2022
, “
An Alternative Form of Energy Density Function Demonstrating the Electro-Elastic Deformation of a Dielectric Cylindrical Actuator
,”
Mech. Soft Mater.
,
4
(
1
), p.
3
.
32.
Li
,
H.
,
Zheng
,
Y.
,
Han
,
Y. L.
,
Cai
,
S.
, and
Guo
,
M.
,
2021
, “
Nonlinear Elasticity of Biological Basement Membrane Revealed by Rapid Inflation and Deflation
,”
Proc. Natl. Acad. Sci. USA
,
118
(
11
), p.
e2022422118
.
33.
Gour
,
S.
,
Kumar
,
D.
, and
Khurana
,
A.
,
2022
, “
Constitutive Modeling for the Tear Fracture of Artificial Tissues in Human-Like Soft Robots
,”
Eur. J. Mech. A. Solids
,
96
, p.
104672
.
34.
Patra
,
A. K.
,
Khurana
,
A.
, and
Kumar
,
D.
,
2024
, “
Modeling and Analysis of a Thermo-Electro-Magneto-Viscoelastic Actuator
,”
Int. J. Appl. Mech.
,
16
(
02
), p.
2450015
.
35.
Pandey
,
A. K.
,
Khurana
,
A.
, and
Sharma
,
A. K.
,
2024
, “
Thermo-Electro-Mechanical Effects on Nonlinear Dynamics of Smart Dielectric Elastomer Minimum Energy Structures
,”
Eur. J. Mech. A. Solids
,
105
, p.
105222
.
36.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Nonlinear Oscillations of Particle-Reinforced Electro-Magneto-Viscoelastomer Actuators
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121002
.
37.
Patra
,
A. K.
,
Khurana
,
A.
,
Kumar
,
D.
, and
Saxena
,
P.
,
2024
, “
Impact of Compliant Electrodes on the Dynamics of Electromagnetoactive Membranes
,”
Int. J. Non-Linear Mech.
,
167
, p.
104906
.
38.
Khurana
,
A.
,
Kumar
,
A.
,
Raut
,
S. K.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Effect of Viscoelasticity on the Nonlinear Dynamic Behavior of Dielectric Elastomer Minimum Energy Structures
,”
Int. J. Solids Struct.
,
208
, pp.
141
153
.
39.
Xu
,
B.-X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
.
40.
Zhang
,
J.
,
Chen
,
H.
,
Li
,
B.
,
McCoul
,
D.
, and
Pei
,
Q.
,
2015
, “
Coupled Nonlinear Oscillation and Stability Evolution of Viscoelastic Dielectric Elastomers
,”
Soft Matter
,
11
(
38
), pp.
7483
7493
.
41.
Khurana
,
A.
,
Kumar
,
A.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Effect of Polymer Chains Entanglements, Crosslinks and Finite Extensibility on the Nonlinear Dynamic Oscillations of Dielectric Viscoelastomer Actuators
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1227
1251
.
42.
Zhang
,
J.
,
Tang
,
L.
,
Li
,
B.
,
Wang
,
Y.
, and
Chen
,
H.
,
2015
, “
Modeling of the Dynamic Characteristic of Viscoelastic Dielectric Elastomer Actuators Subject to Different Conditions of Mechanical Load
,”
ASME J. Appl. Phys.
,
117
(
8
), p.
084902
.
You do not currently have access to this content.