Abstract

In this work, a numerical analysis of shaped charge impact process is conducted to investigate the jet formation process and its penetration performance on metal targets. Numerical results are compared with experimental data from published literature for liners made up of copper and iron. Conical and bowl-shaped liner geometries are simulated with various configurations to observe their effects on projectile shape and penetration capability using the finite element (FE) method. The exact shape of the explosively formed projectile at the onset of impact is modeled as a rigid 3D body to simulate the penetration process. #45 and Armox 500T steels are used as the target materials, and the material behavior and failure mechanisms are modeled using the Johnson–Cook (JC) plasticity and damage models. In addition to the FE method, smoothed particle hydrodynamics (SPH) is utilized as well to evaluate its capacity in predicting the failure behavior of the metal targets. It is concluded that the FE method outperforms the SPH method at predicting failure modes, while SPH can still be used to predict residual velocity and hole diameters. Armox 500T demonstrates a higher impact resistance compared to #45 steel. Liner geometry is found to significantly affect penetration performance. Sharper and thinner projectiles formed from liners with small cone angles are shown to be highly efficient in penetrating through armor steel targets.

References

1.
Walters
,
W. P.
,
1992
, “
Shaped Charges and Shock Waves
,”
Shock Compression of Condensed Matter–1991, Conference: American Physical Society Topical Conference
,
Williamsburg, VA
,
June 17–20
, pp.
1053
1060
.
2.
Cullis
,
I. G.
, and
Townsley
,
R.
,
2011
, “
The Potential of FOX-7 Explosive in Insensitive Munition Design
,”
ASME J. Appl. Mech.
,
78
(
5
), p.
051012
.
3.
Church
,
P.
,
Claridge
,
R.
,
Ottley
,
P.
,
Lewtas
,
I.
,
Harrison
,
N.
,
Gould
,
P.
,
Braithwaite
,
C.
, and
Williamson
,
D.
,
2013
, “
Investigation of a Nickel-Aluminum Reactive Shaped Charge Liner
,”
ASME J. Appl. Mech.
,
80
(
3
), p.
031701
.
4.
Liu
,
J.
,
Long
,
Y.
,
Ji
,
C.
,
Zhong
,
M.
, and
Liu
,
Q.
,
2017
, “
The Influence of Liner Material on the Dynamic Response of the Finite Steel Target Subjected to High Velocity Impact by Explosively Formed Projectile
,”
Int. J. Impact Eng.
,
109
(
11
), pp.
264
275
.
5.
Liu
,
J.
,
Long
,
Y.
, and
Ji
,
C.
,
2018
, “
Ballistic Performance Study on the Finite Steel Target Subjected to Normal and Oblique Impact by Copper Explosively Formed Projectile
,”
Int. J. Protective Struct.
,
9
(
4
), pp.
461
483
.
6.
Xu
,
W. L.
,
Wang
,
C.
, and
Deng
,
T.
,
2019
, “
Bore-Center Annular Shaped Charges With Different Liner Materials Penetrating Into Steel Targets
,”
Defence Technol.
,
15
(
5
), pp.
796
801
. SI: 2019 International Symp. Ballistics.
7.
Appelgren
,
P.
,
Skoglund
,
M.
,
Lundberg
,
P.
,
Westerling
,
L.
,
Larsson
,
A.
, and
Hurtig
,
T.
,
2009
, “
Experimental Study of Electromagnetic Effects on Solid Copper Jets
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
011010
.
8.
Kamarudin
,
K. H.
,
Zaidi
,
A. M. A.
,
Abdullah
,
S.
, and
Koslan
,
M. F. S.
,
2015
, “
Establishment of Shaped Charge Optimum Parameters for Small Scale Hydrodynamic Penetration
,”
Modern Appl. Sci.
,
10
(
1
), pp.
1
82
.
9.
Wu
,
H.
,
Hu
,
F.
, and
Fang
,
Q.
,
2019
, “
A Comparative Study for the Impact Performance of Shaped Charge Jet on UHPC Targets
,”
Defence Technol.
,
15
(
4
), pp.
506
518
.
10.
Wang
,
C.
,
Ma
,
T.
, and
Ning
,
J.
,
2008
, “
Experimental Investigation of Penetration Performance of Shaped Charge Into Concrete Targets
,”
Acta. Mech. Sin.
,
24
(
3
), pp.
345
349
.
11.
Yavuz
,
M. S.
,
Yıldırım
,
R. O.
, and
Serin
,
N.
,
2013
, “
Numerical and Experimental Investigation of Jet Formation and Particulation in Shaped Charges With Tulip-Like Steel Liners
,”
Procedia. Eng.
,
58
, pp.
608
616
. Proceedings of the 12th Hypervelocity Impact Symposium.
12.
Gerami
,
N. D.
,
Liaghat
,
G. H.
,
Moghadas
,
G. H. R. S.
, and
Khazraiyan
,
N.
,
2017
, “
Analysis of Liner Effect on Shaped Charge Penetration Into Thick Concrete Targets
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
39
(
8
), pp.
3189
3201
.
13.
Wang
,
C.
,
Xu
,
W.
, and
Chung Kim Yuen
,
S.
,
2018
, “
Penetration of Shaped Charge Into Layered and Spaced Concrete Targets
,”
Int. J. Impact Eng.
,
112
(
2
), pp.
193
206
.
14.
Wang
,
H.
,
Guo
,
H.
,
Geng
,
B.
,
Yu
,
Q.
, and
Zheng
,
Y.
,
2019
, “
Application of PTFE/Al Reactive Materials for Double-Layered Liner Shaped Charge
,”
Materials
,
12
(
17
), p.
2768
.
15.
Zhang
,
H.
, and
Ge
,
C.
,
2022
, “
Penetration and Internal Blast Behavior of Reactive Liner Enhanced Shaped Charge Against Concrete Space
,”
Defence Technol.
,
18
(
6
), pp.
952
962
.
16.
Minin
,
V. F.
,
Minin
,
O. V.
, and
Minin
,
I. V.
,
2012
, “
Physics Hypercumulation and Comdined Shaped Charges
,”
2012 IEEE 11th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE)
,
Novosibirsk, Russia
,
Oct. 2–4
, pp.
34
52
.
17.
Xu
,
W.
,
Wang
,
C.
, and
Chen
,
D.
,
2019
, “
The Jet Formation and Penetration Capability of Hypervelocity Shaped Charges
,”
Int. J. Impact Eng.
,
132
(
10
), p.
103337
.
18.
Ge
,
C.
,
Qu
,
Z.
,
Wang
,
J.
,
Hu
,
D.
, and
Zhang
,
Y.
,
2022
, “
Study on Jet Formation Behavior and Optimization of Trunconical Hypercumulation Shaped Charge Structure
,”
Defence Technol.
,
21
(
3
), pp.
196
206
.
19.
Saran
,
S.
,
Ayısıt
,
O.
, and
Yavuz
,
M. S.
,
2013
, “
Experimental Investigations on Aluminum Shaped Charge Liners
,”
Procedia. Eng.
,
58
, pp.
479
486
. Proceedings of the 12th Hypervelocity Impact Symposium.
20.
Xu
,
W.
,
Wang
,
C.
, and
Yuan
,
J.
,
2021
, “
Impact Performance of an Annular Shaped Charge Designed by Convolutional Neural Networks
,”
Thin-Walled Struct.
,
160
(
3
), p.
107241
.
21.
Zhang
,
Z.
,
Wang
,
C.
,
Xu
,
W.
,
Hu
,
H.
, and
Guo
,
Y.
,
2022
, “
Application of a New Type of Annular Shaped Charge in Penetration Into Underwater Double-Hull Structure
,”
Int. J. Impact Eng.
,
159
(
1
), p.
104057
.
22.
Guo
,
W.
,
Liu
,
J.
,
Xiao
,
Y.
,
Li
,
S.
,
Zhao
,
Z.
, and
Cao
,
J.
,
2016
, “
Comparison of Penetration Performance and Penetration Mechanism of W-cu Shaped Charge Liner Against Three Kinds of Target: Pure Copper, Carbon Steel and Ti-6Al-4V Alloy
,”
Int. J. Refractory Metals Hard Materials
,
60
(
11
), pp.
147
153
.
23.
Elshenawy
,
T.
,
Elbeih
,
A.
, and
Li
,
Q.
,
2018
, “
Influence of Target Strength on the Penetration Depth of Shaped Charge Jets Into RHA Targets
,”
Int. J. Mech. Sci.
,
136
(
2
), pp.
234
242
.
24.
Helte
,
A.
, and
Lidén
,
E.
,
2010
, “
The Role of Kelvin–Helmholtz Instabilities on Shaped Charge Jet Interaction With Reactive Armor Plates
,”
ASME J. Appl. Mech.
,
77
(
5
), p.
051805
.
25.
Wiśniewski
,
A.
,
2010
, “
Explosive Sensitivity Influence on One- and Two-Layered Reactive Armors’ Behavior
,”
J. Appl. Mech.
,
77
(
5
), p.
051901
.
26.
Jia
,
X.
,
2013
, “
Experimental Study on the Performance of Woven Fabric Rubber Composite Armor Subjected to Shaped Charge Jet Impact
,”
Int. J. Impact Eng.
,
57
(
7
), pp.
134
144
.
27.
Guo
,
H.
,
Zheng
,
Y.
,
Yu
,
Q.
,
Ge
,
C.
, and
Wang
,
H.
,
2019
, “
Penetration Behavior of Reactive Liner Shaped Charge Jet Impacting Thick Steel Plates
,”
Int. J. Impact Eng.
,
126
(
4
), pp.
76
84
.
28.
Guo
,
H. G.
,
He
,
S.
,
Ma
,
H. B.
,
Sun
,
T.
, and
Zheng
,
Y. F.
,
2020
, “
Effect of Inner Liner Material on Penetration Behavior of Reactive Material Double-Layered Liner Shaped Charge
,”
J. Phys.: Conf. Ser.
,
1507
(
3
), p.
032005
.
29.
Xu
,
W.
,
Wang
,
C.
, and
Chen
,
D.
,
2019
, “
Formation of a Bore-Center Annular Shaped Charge and Its Penetration Into Steel Targets
,”
Int. J. Impact Eng.
,
127
(
5
), pp.
122
134
.
30.
Pyka
,
D.
,
Kurzawa
,
A.
,
Bocian
,
M.
,
Bajkowski
,
M.
,
Magier
,
M.
,
Sliwinski
,
J.
, and
Jamroziak
,
K.
,
2020
, “
Numerical and Experimental Studies of the ŁK Type Shaped Charge
,”
Applied Sciences
,
10
(
19
), p.
6742
.
31.
Żochowski
,
P.
, and
Warchoł
,
R.
,
2022
, “
Experimental and Numerical Study on the Influence of Shaped Charge Liner Cavity Filing on Jet Penetration Characteristics in Steel Targets
,”
Defence Technol.
,
23
(
5
), pp.
60
74
.
32.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
33.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr-Coulomb Criterion to Ductile Fracture
,”
Int. J. Fracture
,
161
(
1
), pp.
1
20
.
34.
Cockcroft
,
M. G.
, and
Latham
,
D. J.
,
1968
, “
Ductility and Workability of Metals
,”
J. Inst. Met.
,
96
, pp.
33
39
.
35.
Kılıç
,
N.
, and
Ekici
,
B.
,
2013
, “
Ballistic Resistance of High Hardness Armor Steels Against 7.62 mm Armor Piercing Ammunition
,”
Mater. Des.
,
44
(
2
), pp.
35
48
.
36.
Senthil
,
K.
, and
Iqbal
,
M.
,
2021
, “
Prediction of Superior Target Layer Configuration of Armour Steel, Mild Steel and Aluminium 7075-T651 Alloy Against 7.62 AP Projectile
,”
Structures
,
29
(
2
), pp.
2106
2119
.
37.
Vural
,
H.
,
Erdogan
,
C.
,
Karakas
,
A.
,
Fenercioglu
,
T. O.
, and
Yalcinkaya
,
T.
,
2023
, “
Experimental Identification of Uncoupled Ductile Damage Models and Application in Flow Forming of IN718
,”
Mater. Res. Proc.
,
28
, pp.
807
816
.
38.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O.
, and
Langseth
,
M.
,
2006
, “
On the Influence of Fracture Criterion in Projectile Impact of Steel Plates
,”
Comput. Mater. Sci.
,
38
(
1
), pp.
176
191
.
39.
Børvik
,
T.
,
Olovsson
,
L.
,
Dey
,
S.
, and
Langseth
,
M.
,
2011
, “
Normal and Oblique Impact of Small Arms Bullets on AA6082-T4 Aluminium Protective Plates
,”
Int. J. Impact Eng.
,
38
(
7
), pp.
577
589
.
40.
Holmen
,
J. K.
,
Hopperstad
,
O. S.
, and
Børvik
,
T.
,
2015
, “
Low-Velocity Impact on Multi-Layered Dual-Phase Steel Plates
,”
Int. J. Impact Eng.
,
78
(
4
), pp.
161
177
.
41.
Xiao
,
X.
,
Wang
,
Y.
,
Vershinin
,
V. V.
,
Chen
,
L.
, and
Lou
,
Y.
,
2019
, “
Effect of Lode Angle in Predicting the Ballistic Resistance of Weldox 700 E Steel Plates Struck by Blunt Projectiles
,”
Int. J. Impact Eng.
,
128
(
6
), pp.
46
71
.
42.
Xiao
,
X.
,
Pan
,
H.
,
Bai
,
Y.
,
Lou
,
Y.
, and
Chen
,
L.
,
2019
, “
Application of the Modified Mohr–Coulomb Fracture Criterion in Predicting the Ballistic Resistance of 2024-T351 Aluminum Alloy Plates Impacted by Blunt Projectiles
,”
Int. J. Impact Eng.
,
123
(
1
), pp.
26
37
.
43.
Göçmen
,
Y.
,
Vural
,
H.
,
Erdoğan
,
C.
, and
Yalçinkaya
,
T.
,
2022
, “
Numerical Analysis of Ballistic Impact Through FE and SPH Methods
,”
Procedia. Struct. Integrity.
,
42
, pp.
1736
1743
.
44.
Erdogan
,
C.
,
Vural
,
H.
,
Fenercioğlu
,
T. O.
, and
Yalçinkaya
,
T.
,
2022
, “
Effect of Process Parameters on the Ductile Failure Behavior of Flow Forming Process
,”
Procedia. Struct. Integrity.
,
42
, pp.
1643
1650
.
45.
Vural
,
H.
,
Erdogan
,
C.
,
Fenercioğlu
,
T. O.
, and
Yalçinkaya
,
T.
,
2022
, “
Ductile Failure Prediction During the Flow Forming Process
,”
Procedia. Struct. Integrity.
,
35
, pp.
25
33
.
46.
Zhang
,
Z.
,
Wang
,
L.
,
Silberschmidt
,
V. V.
, and
Wang
,
S.
,
2016
, “
SPH-FEM Simulation of Shaped-Charge Jet Penetration Into Double Hull: A Comparison Study for Steel and SPS
,”
Composite Struct.
,
155
, pp.
135
144
.
47.
Pang
,
M.
,
Sun
,
F.
,
Liu
,
B.
, and
Xue
,
S.
,
2019
, “
An ALE Approach to the Simulation of Perforating Process
,”
IOP Conf. Ser.: Earth Environmental Sci.
,
267
(
4
), p.
042014
.
48.
Du
,
Y.
,
He
,
G.
,
Li
,
W.
, and
Wang
,
K.
,
2022
, “
Experimental and Numerical Study on the Penetration Performance of a Shaped Charge
,”
Materials
,
15
(
11
), p.
3899
.
49.
Zhang
,
Z.
, and
Jin
,
W.-W.
,
2020
, “
Finite Element Modeling of the Shaped Charge Jet and Design of the Reusable Perforating Gun
,”
Petroleum Sci.
,
17
(
5
), pp.
1389
1399
.
50.
Dehestani
,
P.
,
Fathi
,
A.
, and
Daniali
,
H. M.
,
2019
, “
Numerical Study of the Stand-Off Distance and Liner Thickness Effect on the Penetration Depth Efficiency of Shaped Charge Process
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
3
), pp.
977
986
.
51.
Wu
,
J.
,
Liu
,
J.
, and
Du
,
Y.
,
2007
, “
Experimental and Numerical Study on the Flight and Penetration Properties of Explosively-Formed Projectile
,”
Int. J. Impact Eng.
,
34
(
7
), pp.
1147
1162
.
52.
ABAQUS
,
2014
, “
The Abaqus Documentation Collection, Version 6.14
,”
Dassault Systèmes, Providence, RI.
53.
Chen
,
X.
,
Chen
,
G.
, and
Zhang
,
F.
,
2008
, “
Deformation and Failure Modes of Soft Steel Projectiles Impacting Harder Steel Targets at Increasing Velocity
,”
Experimental Mech.
,
48
(
3
), pp.
335
354
.
54.
Iqbal
,
M.
,
Senthil
,
K.
,
Sharma
,
P.
, and
Gupta
,
N.
,
2016
, “
An Investigation of the Constitutive Behavior of Armox 500T Steel and Armor Piercing Incendiary Projectile Material
,”
Int. J. Impact Eng.
,
96
(
10
), pp.
146
164
.
55.
Cheng
,
Y.
,
Wu
,
H.
,
Jiang
,
P.
, and
Fang
,
Q.
,
2023
, “
Ballistic Resistance of High-Strength Armor Steel Against Ogive-Nosed Projectile Impact
,”
Thin-Walled Struct.
,
183
, p.
110350
.
You do not currently have access to this content.