Abstract

The bioinspired structure of the mushroom-shaped micropillar has been considered a blueprint of functionalized adhesives due to its prominent dry adhesive performance. Among the design strategies, the geometrical parameters of the stalk and tip are of significance for improving their adhesion performance. In this study, mushroom-shaped micropillars in different diameters of the stalk and tip are fabricated by a new fabrication approach, and the adhesion measurements are performed to study the influences of loading conditions and geometrical parameters on the pull-off force. The experimental and numerical results suggest that the stalk and tip diameters strongly affect the interfacial detachment behavior and the pull-off force. Two detachment modes are distinguished by the positions of the crack initiation. Finite elemental analyses reveal the detachment mechanisms by the interfacial stress distribution and damage evolution. According to the detachment mechanisms, a structure design strategy for mushroom-shaped micropillar with maximum pull-off force is proposed. The present studies provide a fresh insight into the adhesion behaviors of mushroom-shaped micropillars and contribute to the future adhesive design.

References

1.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
2.
Geim
,
A. K.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
,
Novoselov
,
K. S.
,
Zhukov
,
A. A.
, and
Shapoval
,
S. Y.
,
2003
, “
Microfabricated Adhesive Mimicking Gecko Foot-Hair
,”
Nat. Mater.
,
2
(
7
), pp.
461
463
.
3.
Sitti
,
M.
, and
Fearing
,
R. S.
,
2003
, “
Synthetic Gecko Foot-Hair Micro/Nano-Structures as Dry Adhesives
,”
J Adhes Sci Technol
,
17
(
8
), pp.
1055
1073
.
4.
Hensel
,
R.
,
Moh
,
K.
, and
Arzt
,
E.
,
2018
, “
Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications
,”
Adv. Funct. Mater.
,
28
(
28
), p.
1800865
.
5.
Hwang
,
I.
,
Kim
,
H. N.
,
Seong
,
M.
,
Lee
,
S. H.
,
Kang
,
M.
,
Yi
,
H.
,
Bae
,
W. G.
,
Kwak
,
M. K.
, and
Jeong
,
H. E.
,
2018
, “
Multifunctional Smart Skin Adhesive Patches for Advanced Health Care
,”
Adv. Healthc. Mater.
,
7
(
15
), p.
e1800275
.
6.
Yi
,
H.
,
Seong
,
M.
,
Sun
,
K.
,
Hwang
,
I.
,
Lee
,
K.
,
Cha
,
C.
,
Kim
,
T.-i.
, and
Jeong
,
H. E.
,
2018
, “
Wet-Responsive, Reconfigurable, and Biocompatible Hydrogel Adhesive Films for Transfer Printing of Nanomembranes
,”
Adv. Funct. Mater.
,
28
(
18
), p.
1706498
.
7.
Baik
,
S.
,
Lee
,
H. J.
,
Kim
,
D. W.
,
Kim
,
J. W.
,
Lee
,
Y.
, and
Pang
,
C.
,
2019
, “
Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics
,”
Adv. Mater.
,
31
(
34
), p.
e1803309
.
8.
Liimatainen
,
V.
,
Drotlef
,
D. M.
,
Son
,
D.
, and
Sitti
,
M.
,
2020
, “
Liquid-Superrepellent Bioinspired Fibrillar Adhesives
,”
Adv. Mater.
,
32
(
19
), p.
e2000497
.
9.
Arzt
,
E.
,
Gorb
,
S.
, and
Spolenak
,
R.
,
2003
, “
From Micro to Nano Contacts in Biological Attachment Devices
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
19
), pp.
10603
10606
.
10.
del Campo
,
A.
,
Greiner
,
C.
, and
Arzt
,
E.
,
2007
, “
Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces
,”
Langmuir
,
23
(
20
), pp.
10235
10243
.
11.
Murphy
,
M. P.
,
Aksak
,
B.
, and
Sitti
,
M.
,
2009
, “
Gecko-Inspired Directional and Controllable Adhesion
,”
Small
,
5
(
2
), pp.
170
175
.
12.
Aksak
,
B.
,
Sahin
,
K.
, and
Sitti
,
M.
,
2014
, “
The Optimal Shape of Elastomer Mushroom-Like Fibers for High and Robust Adhesion
,”
Beilstein J. Nanotechnol.
,
5
, pp.
630
638
.
13.
Yi
,
H.
,
Kang
,
M.
,
Kwak
,
M. K.
, and
Jeong
,
H. E.
,
2016
, “
Simple and Reliable Fabrication of Bioinspired Mushroom-Shaped Micropillars With Precisely Controlled Tip Geometries
,”
ACS Appl. Mater. Interfaces
,
8
(
34
), pp.
22671
22678
.
14.
Fischer
,
S. C.
,
Arzt
,
E.
, and
Hensel
,
R.
,
2017
, “
Composite Pillars with a Tunable Interface for Adhesion to Rough Substrates
,”
ACS Appl. Mater. Interfaces
,
9
(
1
), pp.
1036
1044
.
15.
Wang
,
L.
,
Yang
,
X.
,
Wang
,
Q.
,
Yang
,
Z.
,
Duan
,
H.
, and
Lu
,
B.
,
2017
, “
Manufacturing of Mushroom-Shaped Structures and Its Hydrophobic Robustness Analysis Based on Energy Minimization Approach
,”
AIP Adv.
,
7
(
7
), p.
075110
.
16.
Geikowsky
,
E.
,
Gorumlu
,
S.
, and
Aksak
,
B.
,
2018
, “
The Effect of Flexible Joint-Like Elements on the Adhesive Performance of Nature-Inspired Bent Mushroom-Like Fibers
,”
Beilstein J. Nanotechnol.
,
9
, pp.
2893
2905
.
17.
Heepe
,
L.
,
Hoft
,
S.
,
Michels
,
J.
, and
Gorb
,
S. N.
,
2018
, “
Material Gradients in Fibrillar Insect Attachment Systems: The Role of Joint-Like Elements
,”
Soft Matter
,
14
(
34
), pp.
7026
7033
.
18.
Kang
,
S. M.
, and
Choi
,
J. S.
,
2020
, “
Selective Liquid Sliding Surfaces With Springtail-Inspired Concave Mushroom-Like Micropillar Arrays
,”
Small
,
16
(
3
), p.
e1904612
.
19.
Bullock
,
J. M.
, and
Federle
,
W.
,
2011
, “
Beetle Adhesive Hairs Differ in Stiffness and Stickiness: in Vivo Adhesion Measurements on Individual Setae
,”
Naturwissenschaften
,
98
(
5
), pp.
381
387
.
20.
Carbone
,
G.
, and
Pierro
,
E.
,
2012
, “
Sticky Bio-Inspired Micropillars: Finding the Best Shape
,”
Small
,
8
(
9
), pp.
1449
1454
.
21.
Krahn
,
J.
,
Bovero
,
E.
, and
Menon
,
C.
,
2015
, “
Magnetic Field Switchable dry Adhesives
,”
ACS Appl. Mater. Interfaces
,
7
(
4
), pp.
2214
2222
.
22.
Kim
,
S.
, and
Sitti
,
M.
,
2006
, “
Biologically Inspired Polymer Microfibers With Spatulate Tips as Repeatable Fibrillar Adhesives
,”
Appl. Phys. Lett.
,
89
(
26
), p.
261911
.
23.
del Campo
,
A.
,
Greiner
,
C.
,
Álvarez
,
I.
, and
Arzt
,
E.
,
2007
, “
Patterned Surfaces With Pillars With Controlled 3D Tip Geometry Mimicking Bioattachment Devices
,”
Adv. Mater.
,
19
(
15
), pp.
1973
1977
.
24.
Tatari
,
M.
,
Mohammadi Nasab
,
A.
,
Turner
,
K. T.
, and
Shan
,
W.
,
2018
, “
Dynamically Tunable Dry Adhesion via Subsurface Stiffness Modulation
,”
Adv. Mater. Interfaces
,
5
(
18
), p.
1800321
.
25.
Liu
,
X.
,
Gu
,
H.
,
Ding
,
H.
,
Du
,
X.
,
He
,
Z.
,
Sun
,
L.
,
Liao
,
J.
,
Xiao
,
P.
, and
Gu
,
Z.
,
2019
, “
Programmable Liquid Adhesion on Bio-Inspired Re-Entrant Structures
,”
Small
,
15
(
35
), p.
e1902360
.
26.
Cao
,
Z. M.
,
He
,
K. Y.
,
Xiong
,
W.
,
Chen
,
Y.
,
Qiu
,
X. B.
,
Yu
,
D. L.
, and
Guo
,
X. L.
,
2020
, “
Flexible Micropillar Array for Pressure Sensing in High Density Using Image Sensor
,”
Adv. Mater. Interfaces
,
7
(
12
), p.
1902205
.
27.
Zhao
,
J. S.
,
Zhang
,
C.
,
Zou
,
D.
,
Liu
,
X. K.
,
Cai
,
L. X.
,
Li
,
X. Y.
, and
Shi
,
M. X.
,
2019
, “
A Structured Design for Highly Stretchable Electronic Skin
,”
Adv. Mater. Technol.
,
4
(
10
), p.
1900492
.
28.
Song
,
S.
,
Drotlef
,
D. M.
,
Majidi
,
C.
, and
Sitti
,
M.
,
2017
, “
Controllable Load Sharing for Soft Adhesive Interfaces on Three-Dimensional Surfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
22
), p.
E4344
.
29.
Linghu
,
C.
,
Wang
,
C.
,
Cen
,
N.
,
Wu
,
J.
,
Lai
,
Z.
, and
Song
,
J.
,
2018
, “
Rapidly Tunable and Highly Reversible Bio-Inspired Dry Adhesion for Transfer Printing in Air and a Vacuum
,”
Soft Matter
,
15
(
1
), pp.
30
37
.
30.
Mohammadi Nasab
,
A.
,
Luo
,
A.
,
Sharifi
,
S.
,
Turner
,
K. T.
, and
Shan
,
W.
,
2020
, “
Switchable Adhesion via Subsurface Pressure Modulation
,”
ACS Appl. Mater. Interfaces
,
12
(
24
), pp.
27717
27725
.
31.
Zhao
,
J.
,
Li
,
X.
,
Tan
,
Y.
,
Liu
,
X.
,
Lu
,
T.
, and
Shi
,
M.
,
2022
, “
Smart Adhesives via Magnetic Actuation
,”
Adv. Mater.
,
34
(
8
), p.
e2107748
.
32.
Hu
,
H.
,
Tian
,
H.
,
Shao
,
J.
,
Li
,
X.
,
Wang
,
Y.
,
Wang
,
Y.
,
Tian
,
Y.
, and
Lu
,
B.
,
2017
, “
Discretely Supported Dry Adhesive Film Inspired by Biological Bending Behavior for Enhanced Performance on a Rough Surface
,”
ACS Appl. Mater. Interfaces
,
9
(
8
), pp.
7752
7760
.
33.
Kizilkan
,
E.
,
Strueben
,
J.
,
Staubitz
,
A.
, and
Gorb
,
S. N.
,
2017
, “
Bioinspired Photocontrollable Microstructured Transport Device
,”
Sci. Rob.
,
2
(
2
), p.
6
.
34.
Raut
,
H. K.
,
Baji
,
A.
,
Hariri
,
H. H.
,
Parveen
,
H.
,
Soh
,
G. S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2018
, “
Gecko-Inspired Dry Adhesive Based on Micro-Nanoscale Hierarchical Arrays for Application in Climbing Devices
,”
ACS Appl. Mater. Interfaces
,
10
(
1
), pp.
1288
1296
.
35.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
e1707035
.
36.
Wang
,
Z.
,
Wang
,
Z.
,
Dai
,
Z.
, and
Gorb
,
S.
,
2018
, “
Bio-Inspired Adhesive Footpad for Legged Robot Climbing Under Reduced Gravity: Multiple Toes Facilitate Stable Attachment
,”
Appl. Sci.
,
8
(
1
), p.
114
.
37.
Oh
,
J. H.
,
Hong
,
S. Y.
,
Park
,
H.
,
Jin
,
S. W.
,
Jeong
,
Y. R.
,
Oh
,
S. Y.
,
Yun
,
J.
,
Lee
,
H.
,
Kim
,
J. W.
, and
Ha
,
J. S.
,
2018
, “
Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors With Bioinspired Microstructured Adhesive
,”
ACS Appl. Mater. Interfaces
,
10
(
8
), pp.
7263
7270
.
38.
Kim
,
D. W.
,
Baik
,
S.
,
Min
,
H.
,
Chun
,
S.
,
Lee
,
H. J.
,
Kim
,
K. H.
,
Lee
,
J. Y.
, and
Pang
,
C.
,
2019
, “
Highly Permeable Skin Patch With Conductive Hierarchical Architectures Inspired by Amphibians and Octopi for Omnidirectionally Enhanced Wet Adhesion
,”
Adv. Funct. Mater.
,
29
(
13
), p.
1807614
.
39.
Li
,
S.
,
Liu
,
H.
,
Tian
,
H.
,
Wang
,
C.
,
Wang
,
D.
,
Wu
,
Y.
, and
Shao
,
J.
,
2021
, “
Dytiscus Lapponicus-Inspired Structure With High Adhesion in Dry and Underwater Environments
,”
ACS Appl. Mater. Interfaces
,
13
(
35
), pp.
42287
42296
.
40.
Tinnemann
,
V.
,
Arzt
,
E.
, and
Hensel
,
R.
,
2019
, “
Switchable Double-Sided Micropatterned Adhesives for Selective Fixation and Detachment
,”
J. Mech. Phys. Solids
,
123
, pp.
20
27
.
41.
Balijepalli
,
R. G.
,
Begley
,
M. R.
,
Fleck
,
N. A.
,
McMeeking
,
R. M.
, and
Arzt
,
E.
,
2016
, “
Numerical Simulation of the Edge Stress Singularity and the Adhesion Strength for Compliant Mushroom Fibrils Adhered to Rigid Substrates
,”
Int. J. Solids Struct.
,
85–86
, pp.
160
171
.
42.
Kizilkan
,
E.
, and
Gorb
,
S. N.
,
2018
, “
Bioinspired Further Enhanced Dry Adhesive by the Combined Effect of the Microstructure and Surface Free-Energy Increase
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26752
26758
.
43.
Zhang
,
X.
,
Wang
,
Y.
,
Hensel
,
R.
, and
Arzt
,
E.
,
2021
, “
A Design Strategy for Mushroom-Shaped Microfibrils With Optimized Dry Adhesion: Experiments and Finite Element Analyses
,”
ASME J. Appl. Mech.
,
88
(
3
), p.
031015
.
44.
Drotlef
,
D. M.
,
Amjadi
,
M.
,
Yunusa
,
M.
, and
Sitti
,
M.
,
2017
, “
Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors
,”
Adv. Mater.
,
29
(
28
), p.
1701353
.
45.
Fischer
,
S. C. L.
,
Groß
,
K.
,
Torrents Abad
,
O.
,
Becker
,
M. M.
,
Park
,
E.
,
Hensel
,
R.
, and
Arzt
,
E.
,
2017
, “
Funnel-Shaped Microstructures for Strong Reversible Adhesion
,”
Adv. Mater. Interfaces
,
4
(
20
), p.
1700292
.
46.
Wang
,
Y.
,
Kang
,
V.
,
Arzt
,
E.
,
Federle
,
W.
, and
Hensel
,
R.
,
2019
, “
Strong Wet and Dry Adhesion by Cupped Microstructures
,”
ACS Appl. Mater. Interfaces
,
11
(
29
), pp.
26483
26490
.
47.
Hu
,
H.
,
Tian
,
H.
,
Shao
,
J.
,
Wang
,
Y.
,
Li
,
X.
,
Tian
,
Y.
,
Ding
,
Y.
, and
Lu
,
B.
,
2017
, “
Friction Contribution to Bioinspired Mushroom-Shaped Dry Adhesives
,”
Adv. Mater. Interfaces
,
4
(
9
), p.
1700016
.
48.
Greiner
,
C.
,
Campo
,
A. D.
, and
Arzt
,
E.
,
2007
, “
Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload
,”
Langmuir
,
23
(
7
), pp.
3495
3502
.
49.
Barreau
,
V.
,
Hensel
,
R.
,
Guimard
,
N. K.
,
Ghatak
,
A.
,
McMeeking
,
R. M.
, and
Arzt
,
E.
,
2016
, “
Fibrillar Elastomeric Micropatterns Create Tunable Adhesion Even to Rough Surfaces
,”
Adv. Funct. Mater.
,
26
(
26
), pp.
4687
4694
.
50.
Feng
,
X.
,
Meitl
,
M. A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2007
, “
Competing Fracture in Kinetically Controlled Transfer Printing
,”
Langmuir
,
23
(
25
), pp.
12555
12560
.
51.
Labonte
,
D.
, and
Federle
,
W.
,
2015
, “
Rate-Dependence of ‘Wet’ Biological Adhesives and the Function of the Pad Secretion in Insects
,”
Soft Matter
,
11
(
44
), pp.
8661
8673
.
52.
Zhu
,
Z. M.
,
Xia
,
Y.
,
Li
,
J.
,
Jiang
,
C. K.
, and
Jiang
,
H.
,
2019
, “
Rate Dependent Shear Debonding Between a Highly Stretchable Elastomer and a Rigid Substrate: Delayed Debonding and Pre-Stretch Effect
,”
Eng. Fract. Mech.
,
222
, p.
106743
.
You do not currently have access to this content.