Abstract

This study presents a new analytical model for nonlinear dynamics of a discrete rectangular membrane that is subjected to external harmonic force. It has recently been shown that the corresponding autonomous system admits a series of nonlinear normal modes. In this paper, we describe stationary and non-stationary dynamics on a single mode manifold. We suggest a simple formula for the amplitude-frequency response in both conservative and non-conservative cases and present an analytical expression (in parametric space) for thresholds for all possible bifurcations. Theoretical results obtained through asymptotic approach are confirmed by the experimental data. Experiments on the shaking table show that amplitude-frequency response to external force in a real system matches our theory. Substantial hysteresis is observed in the regimes with increasing and decreasing frequency of external force. The obtained results may be used in designing nonlinear energy sinks.

References

1.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
,
McGraw-Hill Book Company
,
New York
.
2.
Quinn
,
D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2010
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME. J. Vib. Acoust.
,
133
(
1
), p.
011001
. 10.1115/1.4002782
3.
Sigalov
,
G.
,
Gendelman
,
O.
,
Al-Shudeifat
,
M.
,
Manevitch
,
L.
,
Vakakis
,
A. F.
, and
Bergman
,
L.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in An Inertially-Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dynamics
,
69
(
4
), pp.
1693
1704
. 10.1007/s11071-012-0379-1
4.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, vol.
156
,
Springer Science & Business Media
.
5.
Dikart
,
A.
,
2006
, “
Problems of Impact Vibration Absorbers
”. ASB, Moscow (in Russian).
6.
Manevitch
,
L.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
. 10.1115/1.4025150
7.
Dekemele
,
K.
,
Van Torre
,
P.
, and
Loccufier
,
M.
,
2020
, “
Design, Construction and Experimental Performance of a Nonlinear Energy Sink in Mitigating Multi-Modal Vibrations
,”
J. Sound. Vib.
,
473
, p.
115243
. 10.1016/j.jsv.2020.115243
8.
Zang
,
J.
, and
Chen
,
L.-Q.
,
2017
, “
Complex Dynamics of a Harmonically Excited Structure Coupled With a Nonlinear Energy Sink
,”
Acta. Mech. Sin.
,
33
(
4
), pp.
801
822
. 10.1007/s10409-017-0671-x
9.
Li
,
X.
,
Liu
,
K.
,
Xiong
,
L.
, and
Tang
,
L.
,
2018
, “
A Variant Nonlinear Energy Sink for Vibration Suppression and Energy Harvesting
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers Digital Collection
.
10.
Nesterenko
,
V.
,
1983
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
J. Appl. Mech. Tech. Phy.
,
24
(
5
), pp.
733
743
. 10.1007/BF00905892
11.
Zhang
,
Z.
,
Koroleva
,
I.
,
Manevitch
,
L.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2016
, “
Nonreciprocal Acoustics and Dynamics in the in-Plane Oscillations of a Geometrically Nonlinear Lattice
,”
Phys. Rev. E
,
94
(
3
), p.
032214
. 10.1103/PhysRevE.94.032214
12.
Bogoliubov
,
N.
, and
Mitropolsky
,
Y.
,
1961
,
Asymptotic Methods in the Theory of Non-Linear Oscillations
,
Gordon and Breach
,
New York, USA
.
13.
Nayfeh
,
A. H.
,
2008
,
Perturbation Methods
,
John Wiley & Sons
.
14.
Manevitch
,
L. I.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
. 10.1115/1.4025150
15.
Koroleva(Kikot)
,
I. P.
, and
Manevitch
,
L. I.
,
2015
, “
Oscillatory Chain With Grounding Support in Conditions of Acoustic Vacuum
,”
Rus. J. Nonlin. Dyn.
,
11
(
3
), pp.
487
502
.
16.
Koroleva(Kikot)
,
I.
,
Manevitch
,
L.
, and
Vakakis
,
A. F.
,
2015
, “
Non-Stationary Resonance Dynamics of a Nonlinear Sonic Vacuum With Grounding Supports
,”
J. Sound. Vib.
,
357
, pp.
349
364
. 10.1016/j.jsv.2015.07.026
17.
Zhang
,
Z.
,
Koroleva
,
I.
,
Manevitch
,
L.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2016
, “
Non-Reciprocal Acoustics and Dynamics in the in-Plane Oscillations of a Geometrically Nonlinear Lattice
,”
Phys. Rev. E
,
94
(
3
), p.
032214
. 10.1103/PhysRevE.94.032214
18.
Zhang
,
Z.
,
Manevitch
,
L.
,
Smirnov
,
V.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2018
, “
Extreme Nonlinear Energy Exchanges in a Geometrically Nonlinear Lattice Oscillating in the Plane
,”
J. Mech. Phys. Solids
,
110
, pp.
1
20
. 10.1016/j.jmps.2017.09.007
19.
Smirnov
,
V.
, and
Manevitch
,
L.
,
2018
, “
Forced Oscillations of the String Under Conditions of ‘sonic Vacuum’
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
376
(
2127
), p.
20170135
.
20.
Koroleva
,
I. P.
, and
Manevitch
,
L. I.
,
2020
, “
Stationary and Non-Stationary Dynamics of Discrete Square Membrane
,”
Communications in Nonlinear Science and Numerical Simulation
,
84
, p.
105174
. 10.1016/j.cnsns.2020.105174
21.
Koroleva
,
I. P.
, and
Manevitch
,
L. I.
,
2019
, “Is Energy Localization Possible in the Conditions of Non-Local Acoustic Vacuum?”.
Problems of Nonlinear Mechanics and Physics of Materials
.
Springer
, pp.
25
38
.
22.
Zhang
,
Z.
,
Manevitch
,
L. I.
,
Smirnov
,
V.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2018
, “
Extreme Nonlinear Energy Exchanges in a Geometrically Nonlinear Lattice Oscillating in the Plane
,”
J. Mech. Phys. Solids.
,
110
, pp.
1
20
. 10.1016/j.jmps.2017.09.007
23.
Strozzi
,
M.
,
Manevitch
,
L. I.
,
Pellicano
,
F.
,
Smirnov
,
V. V.
, and
Shepelev
,
D. S.
,
2014
, “
Low-Frequency Linear Vibrations of Single-Walled Carbon Nanotubes: Analytical and Numerical Models
,”
J. Sound. Vib.
,
333
(
13
), pp.
2936
2957
. 10.1016/j.jsv.2014.01.016
You do not currently have access to this content.