Abstract

The inertia representation of a constrained system includes the formulation of the kinetic energy and its corresponding mass matrix, given the coordinates of the system. The way to find a proper inertia representation achieving better numerical performance is largely unexplored. This paper extends the modified inertia representation (MIR) to the constrained rigid multibody systems. By using the orthogonal projection, we show the possibility to derive the MIR for many types of non-minimal coordinates. We present examples of the derivation of the MIR for both planar and spatial rigid body systems. Error estimation shows that the MIR is different from the traditional inertia representation (TIR) in that its parameter γ can be used to reduce the kinetic energy error. With preconditioned γ, numerical results show that the MIR consistently presents significantly higher numerical accuracy and faster convergence speed than the TIR for the given variational integrator. The idea of using different inertia representations to improve the numerical performance may go beyond constrained rigid multibody systems to other systems governed by differential algebraic equations.

References

1.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
2.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J. L.
,
2001
,
Classical Mechanics
,
Addison Wesley
,
New York
.
3.
Hu
,
J.
, and
Wang
,
T.
,
2019
, “
An Efficient High-Precision Recursive Dynamic Algorithm for Closed-Loop Multibody Systems
,”
Int. J. Numer. Methods Eng.
,
118
(
4
), pp.
181
208
. 10.1002/nme.6007
4.
Pękal
,
M.
,
Wojtyra
,
M.
, and
Frączek
,
J.
,
2019
, “
Free-Body-Diagram Method for the Uniqueness Analysis of Reactions and Driving Forces in Redundantly Constrained Multibody Systems With Nonholonomic Constraints
,”
Mech. Mach. Theory
,
133
, pp.
329
346
. 10.1016/j.mechmachtheory.2018.11.021
5.
Urkullu
,
G.
,
de Bustos
,
I. F.
,
García-Marina
,
V.
, and
Uriarte
,
H.
,
2019
, “
Direct Integration of the Equations of Multibody Dynamics Using Central Differences and Linearization
,”
Mech. Mach. Theory
,
133
, pp.
432
458
. 10.1016/j.mechmachtheory.2018.11.024
6.
Krenk
,
S.
, and
Nielsen
,
M. B.
,
2014
, “
Conservative Rigid Body Dynamics by Convected Base Vectors With Implicit Constraints
,”
Comput. Meth. Appl. Mech. Eng.
,
269
, pp.
437
453
. 10.1016/j.cma.2013.10.028
7.
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge
,
Springer
,
New York
.
8.
García de Jalón
,
J.
, and
Gutiérrez-López
,
M. D.
,
2013
, “
Multibody Dynamics With Redundant Constraints and Singular Mass Matrix: Existence, Uniqueness, and Determination of Solutions for Accelerations and Constraint Forces
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
311
341
. 10.1007/s11044-013-9358-7
9.
Bayo
,
E.
,
Garcia de Jalon
,
J.
, and
Serna
,
M. A.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
. 10.1016/0045-7825(88)90085-0
10.
Bayo
,
E.
, and
Ledesma
,
R.
,
1996
, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
113
130
. 10.1007/BF01833296
11.
Bayo
,
E.
, and
Avello
,
A.
,
1994
, “
Singularity-Free Augmented Lagrangian Algorithms for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
,
5
(
2
), pp.
209
231
.
12.
Udwadia
,
F. E.
, and
Schutte
,
A. D.
,
2010
, “
Equations of Motion for General Constrained Systems in Lagrangian Mechanics
,”
Acta Mechanica
,
213
(
1–2
), pp.
111
129
. 10.1007/s00707-009-0272-2
13.
Udwadia
,
F. E.
, and
Wanichanon
,
T.
,
2013
, “
On General Nonlinear Constrained Mechanical Systems
,”
Numer. Algebra Control Optim.
,
3
(
3
), pp.
425
443
. 10.3934/naco.2013.3.425
14.
Blajer
,
W.
,
2002
, “
Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems With Singularities and Redundancy
,”
Multibody Syst. Dyn.
,
8
(
2
), pp.
141
159
. 10.1023/A:1019581227898
15.
Orden
,
J. C. G.
, and
Ortega
,
R. A.
,
2006
, “
A Conservative Augmented Lagrangian Algorithm for the Dynamics of Constrained Mechanical Systems
,”
Mech. Based Des. Struct. Mach.
,
34
(
4
), pp.
449
468
. 10.1080/15397730601044911
16.
Ruzzeh
,
B.
, and
Kövecses
,
J.
,
2011
, “
A Penalty Formulation for Dynamics Analysis of Redundant Mechanical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021008
. 10.1115/1.4002510
17.
Wojtyra
,
M.
, and
Frączek
,
J.
,
2013
, “
Comparison of Selected Methods of Handling Redundant Constraints in Multibody Systems Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021007
. 10.1115/1.4006958
18.
González
,
F.
, and
Kövecses
,
J.
,
2013
, “
Use of Penalty Formulations in Dynamic Simulation and Analysis of Redundantly Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
29
(
1
), pp.
57
76
. 10.1007/s11044-012-9322-y
19.
Zhu
,
Y.
,
Dopico
,
D.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2015
, “
Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation Using Adjoint Sensitivity
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031009
. 10.1115/1.4029601
20.
Zhang
,
J.
,
Liu
,
D.
, and
Liu
,
Y.
,
2016
, “
A Constraint Violation Suppressing Formulation for Spatial Multibody Dynamics With Singular Mass Matrix
,”
Multibody Syst. Dyn.
,
36
(
1
), pp.
87
110
. 10.1007/s11044-015-9458-7
21.
González
,
F.
,
Dopico
,
D.
,
Pastorino
,
R.
, and
Cuadrado
,
J.
,
2016
, “
Behaviour of Augmented Lagrangian and Hamiltonian Methods for Multibody Dynamics in the Proximity of Singular Configurations
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1491
1508
. 10.1007/s11071-016-2774-5
22.
Marques
,
F.
,
Souto
,
A. P.
, and
Flores
,
P.
,
2017
, “
On the Constraints Violation in Forward Dynamics of Multibody Systems
,”
Multibody Syst. Dyn.
,
39
(
4
), pp.
385
419
. 10.1007/s11044-016-9530-y
23.
Pappalardo
,
C. M.
,
2015
, “
A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1841
1869
. 10.1007/s11071-015-2111-4
24.
Pappalardo
,
C. M.
, and
Guida
,
D.
,
2018
, “
A Comparative Study of the Principal Methods for the Analytical Formulation and the Numerical Solution of the Equations of Motion of Rigid Multibody Systems
,”
Arch. Appl. Mech.
,
88
(
12
), pp.
2153
2177
. 10.1007/s00419-018-1441-3
25.
Liu
,
J.
, and
Liu
,
R.
,
2016
, “
Dynamic Modeling of Dual-Arm Cooperating Manipulators Based on Udwadia–Kalaba Equation
,”
Adv. Mech. Eng.
,
8
(
7
), pp.
1
10
. 10.1177/1687814016658849
26.
Guida
,
D.
, and
Pappalardo
,
C. M.
,
2014
, “
Forward and Inverse Dynamics of Nonholonomic Mechanical Systems
,”
Meccanica
,
49
(
7
), pp.
1547
1559
. 10.1007/s11012-014-9937-6
27.
Potosakis
,
N.
,
Paraskevopoulos
,
E.
, and
Natsiavas
,
S.
,
2019
, “
Application of an Augmented Lagrangian Approach to Multibody Systems With Equality Motion Constraints
,”
Nonlinear Dyn.
, pp.
1
24
. 10.1007/s11071-019-05059-6
28.
Malczyk
,
P.
,
Frączek
,
J.
,
González
,
F.
, and
Cuadrado
,
J.
,
2019
, “
Index-3 Divide-and-Conquer Algorithm for Efficient Multibody System Dynamics Simulations: Theory and Parallel Implementation
,”
Nonlinear Dyn.
,
95
(
1
), pp.
727
747
. 10.1007/s11071-018-4593-3
29.
Xu
,
X.
, and
Zhong
,
W.
,
2016
, “
On the Numerical Influences of Inertia Representation for Rigid Body Dynamics in Terms of Unit Quaternion
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
11
. 10.1115/1.4033031
30.
Xu
,
X.
,
Luo
,
J.
, and
Wu
,
Z.
,
2019
, “
The Numerical Influence of Additional Parameters of Inertia Representations for Quaternion-Based Rigid Body Dynamics
,”
Multibody Syst. Dyn.
, pp.
1
34
. 10.1007/s11044-019-09697-x
31.
Wendlandt
,
J. M.
, and
Marsden
,
J. E.
,
1997
, “
Mechanical Integrators Derived From a Discrete Variational Principle
,”
Physica D
,
106
(
3–4
), pp.
223
246
. 10.1016/S0167-2789(97)00051-1
32.
Callejo
,
A.
,
Gholami
,
F.
,
Enzenhöfer
,
A.
, and
Kövecses
,
J.
,
2017
, “
Unique Minimum Norm Solution to Redundant Reaction Forces in Multibody Systems
,”
Mech. Mach. Theory
,
116
, pp.
310
325
. 10.1016/j.mechmachtheory.2017.06.001
33.
Aghili
,
F.
,
2019
, “
Modeling and Analysis of Multiple Impacts in Multibody Systems Under Unilateral and Bilateral Constrains Based on Linear Projection Operators
,”
Multibody Syst. Dyn.
,
46
(
1
), pp.
41
62
. 10.1007/s11044-018-09658-w
34.
Udwadia
,
F. E.
, and
Phohomsiri
,
P.
,
2006
, “
Explicit Equations of Motion for Constrained Mechanical Systems With Singular Mass Matrices and Applications to Multi-Body Dynamics
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
462
(
2071
), pp.
2097
2117
. 10.1098/rspa.2006.1662
35.
David Bau
,
I.
, and
Trefethen
,
L. N.
,
1997
,
Numerical Linear Algebra
,
Siam
,
New York
.
36.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2013
,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore, MD
.
37.
Argyris
,
J.
,
1982
, “
An Excursion Into Large Rotations
,”
Comput. Meth. Appl. Mech. Eng.
,
32
(
1–3
), pp.
85
155
. 10.1016/0045-7825(82)90069-X
38.
Betsch
,
P.
, and
Steinmann
,
P.
,
2001
, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
3–5
), pp.
467
488
. 10.1016/S0045-7825(01)00283-3
39.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.