This paper presents an innovative approach of stress attenuation through a continuous impedance-graded material system for high strain-rate events. High energetic dynamic events such as blasts and impact could cause stress waves—in the form of elastic, plastic, and shock—to propagate in a solid material. An impedance-graded composite is created by arranging different metallic alloys in the reducing order of their impedance through the system. Impedance, which is the product of volumetric mass density and wave velocity, is chosen as the function as it plays a governing role in elastic, plastic, and shock waves. An analytical framework to quantify the stress wave propagation through an impedance-graded multimaterial system is developed based on the principles of shock and elastic wave theories. The numerical simulations carried out using nonlinear finite element code, LS-DYNA, were able to capture and quantify the elastic, plastic, and shock waves and their reflections at different interfaces. It was identified that the final transmitted stress wave, which could comprise elastic, plastic, and shock waves, as well as the reflected tensile elastic wave at each material interface, needs to be controlled in order to develop a robust multimaterial system.

References

1.
Park
,
Y.
,
Kim
,
Y.
,
Baluch
,
A. H.
, and
Kim
,
C.-G.
,
2014
, “
Empirical Study of the High Velocity Impact Energy Absorption Characteristics of Shear Thickening Fluid (STF) Impregnated Kevlar Fabric
,”
Int. J. Impact Eng.
,
72
, pp.
67
74
.
2.
Mohotti
,
D.
,
Ngo
,
T.
,
Mendis
,
P.
, and
Raman
,
S. N.
,
2013
, “
Polyurea Coated Composite Aluminium Plates Subjected to High Velocity Projectile Impact
,”
Mater. Design
,
52
, pp.
1
16
.
3.
Zhang
,
J.
,
Shi
,
X. H.
, and
Soares
,
C. G.
,
2017
, “
Experimental Study on the Response of Multi-Layered Protective Structure Subjected to Underwater Contact Explosions
,”
Int. J. Impact Eng.
,
100
, pp.
23
34
.
4.
Zheng
,
J.
,
Hu
,
Y.
,
Ma
,
L.
, and
Du
,
Y.
,
2015
, “
Delamination Failure of Composite Containment Vessels Subjected to Internal Blast Loading
,”
Compos. Struct.
,
130
, pp.
29
36
.
5.
Bambach
,
M. R.
,
2014
, “
Numerical Simulation of the Shock Spalling Failure of Bonded Fibre–Epoxy Strengthening Systems for Metallic Structures
,”
Eng. Struct.
,
64
, pp.
1
11
.
6.
Sriram
,
R.
,
Vaidya
,
U. K.
, and
Kim
,
J.-E.
,
2006
, “
Blast Impact Response of Aluminum Foam Sandwich Composites
,”
J. Mater. Sci.
,
41
, pp.
4023
4039
.
7.
Yin
,
C.
,
Jin
,
Z.
,
Chen
,
Y.
, and
Hua
,
H.
,
2016
, “
Shock Mitigation Effects of Cellular Cladding on Submersible Hull Subjected to Deep Underwater Explosion
,”
Ocean Eng.
,
117
, pp.
221
237
.
8.
Imbalzano
,
G.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Lee
,
P. V. S.
,
2016
, “
A Numerical Study of Auxetic Composite Panels Under Blast Loadings
,”
Compos. Struct.
,
135
, pp.
339
352
.
9.
Remennikov
,
A.
,
Ngo
,
T.
,
Mohotti
,
D.
,
Uy
,
B.
, and
Netherton
,
M.
,
2017
, “
Experimental Investigation and Simplified Modeling of Response of Steel Plates Subjected to Close-In Blast Loading From Spherical Liquid Explosive Charges
,”
Int. J. Impact Eng.
,
101
, pp.
78
89
.
10.
Yang
,
W.
,
Sherman
,
V. R.
,
Gludovatz
,
B.
,
Mackey
,
M.
,
Zimmermann
,
E. A.
,
Chang
,
E. H.
,
Schaible
,
E.
,
Qin
,
Z.
,
Buehler
,
M. J.
,
Ritchie
,
R. O.
, and
Meyers
,
M. A.
,
2014
, “
Protective Role of Arapaima Gigas Fish Scales: Structure and Mechanical Behavior
,”
Acta Biomater.
,
10
, pp.
3599
3614
.
11.
Bruck
,
H. A.
,
2000
, “
A One-Dimensional Model for Designing Functionally Graded Materials to Manage Stress Waves
,”
Int. J. Solids Struct.
,
37
, pp.
6383
6395
.
12.
Salvado
,
F. C.
,
Teixeria-Dias
,
F.
,
Walley
,
S. M.
,
Lea
,
L. J.
, and
Cardoso
,
J. B.
,
2017
, “
A Review on the Strain Rate Dependency of the Dynamic Viscoplastic Response of FCC Metals
,”
Prog. Mater. Sci.
,
88
, pp.
186
231
.
13.
Tedesco
,
J. W.
, and
Landis
,
D. W.
,
1989
, “
Wave Propagation Through Layered System
,”
Comput. Struct.
,
32
, pp.
625
638
.
14.
Hazell
,
P. J.
,
2015
,
Armour: Materials, Theory and Design
,
CRC Press/Taylor & Francis
,
Boca Raton, FL
. ISBN: 9781482238303.
15.
Meyers
,
M. A.
,
2007
,
Dynamic Behavior of Materials
,
Wiley
,
New York
. ISBN: 9780471582625.
16.
Cooper
,
P. W.
,
1996
,
Explosives Engineering
,
Wiley
,
Weinheim
. ISBN: 9781119537175.
17.
Davison
,
L.
,
2008
,
Fundamentals of Shock Wave Propagation in Solids
,
Springer
,
Berlin
. ISBN: 9783540745686.
18.
Gardner
,
N.
,
Wang
,
E.
, and
Shukla
,
A.
,
2012
, “
Performance of Functionally Graded Sandwich Composite Beams Under Shock Wave Loading
,”
Compos. Struct.
,
94
, pp.
1755
1770
.
19.
Kiernan
,
S.
,
Cui
,
L.
, and
Gilchrist
,
M. D.
,
2009
, “
Propagation of a Stress Wave Through a Virtual Functionally Graded Foam
,”
Int. J. Nonlinear Mech.
,
44
, pp.
456
468
.
20.
Hui
,
D.
, and
Dutta
,
P. K.
,
2011
, “
A New Concept of Shock Mitigation by Impedance-Graded Materials
,”
Compos. Part B Eng.
,
42
, pp.
2181
2184
.
21.
Livermore Software Technology Corporation
,
2007
, “
LS-DYNA Keyword User's Manual
,” Version R9.0, California.
22.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. J. W.
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
Appl. Mech. Rev.
,
57
, pp.
223
250
.
You do not currently have access to this content.