The ability of certain materials to convert electrical stimuli into mechanical deformation, and vice versa, is a prized property. Not surprisingly, applications of such so-called piezoelectric materials are broad—ranging from energy harvesting to self-powered sensors. In this perspective, written in the form of question-answers, we highlight a relatively understudied electromechanical coupling called flexoelectricity that appears to have tantalizing implications in topics ranging from biophysics to the design of next-generation multifunctional nanomaterials.

References

1.
Nowick
,
A. S.
,
2005
,
Crystal Properties Via Group Theory
,
Cambridge University Press
,
New York
.
2.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), p.
5883
.
3.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.
4.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
.
5.
Tagantsev
,
A. K.
,
Meunier
,
V.
, and
Sharma
,
P.
,
2009
, “
Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling
,”
MRS Bull.
,
34
(
9
), pp.
643
647
.
6.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
.
7.
Yudin
,
P. V.
, and
Tagantsev
,
A. K.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
.
8.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y.-W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
.
9.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
25
(
7
), pp.
946
974
.
10.
Dumitrica
,
T.
,
Landis
,
C. M.
, and
Yakobson
,
B. I.
,
2002
, “
Curvature-Induced Polarization in Carbon Nanoshells
,”
Chem. Phys. Lett.
,
360
(
1
), pp.
182
188
.
11.
Chandratre
,
S.
, and
Sharma
,
P.
,
2012
, “
Coaxing Graphene to be Piezoelectric
,”
Appl. Phys. Lett.
,
100
(
2
), p.
023114
.
12.
Kalinin
,
S. V.
, and
Meunier
,
V.
,
2008
, “
Electronic Flexoelectricity in Low-Dimensional Systems
,”
Phys. Rev. B
,
77
(
3
), p.
033403
.
13.
Zelisko
,
M.
,
Hanlumyuang
,
Y.
,
Yang
,
S.
,
Liu
,
Y.
,
Lei
,
C.
,
Li
,
J.
,
Pulickel
,
M.
,
Ajayan
,
P. M.
, and
Sharma
,
P.
,
2014
, “
Anomalous Piezoelectricity in Two-Dimensional Graphene Nitride Nano Sheets
,”
Nat. Commun.
,
5
, p.
4284
.
14.
Naumov
,
I.
,
Bratkovsky
,
A. M.
, and
Ranjan
,
V.
,
2009
, “
Unusual Flexoelectric Effect in Two-Dimensional Noncentrosymmetric sp2-Bonded Crystals
,”
Phys. Rev. Lett.
,
102
(
21
), p.
217601
.
15.
Duerloo
,
K.-A. N.
, and
Reed
,
E. J.
,
2013
, “
Flexural Electromechanical Coupling: A Nanoscale Emergent Property of Boron Nitride Bilayers
,”
Nano Lett.
,
13
(
4
), pp.
1681
1686
.
16.
Petrov
,
A. G.
,
2002
, “
Flexoelectricity of Model and Living Membranes
,”
Biochim. Biophys. Acta
,
1561
(
1
), pp.
1
25
.
17.
Fu
,
J. Y.
,
Zhu
,
W.
,
Li
,
N.
, and
Cross
,
L. E.
,
2006
, “
Experimental Studies of the Converse Flexoelectric Effect Induced by Inhomogeneous Electric Field in a Barium Strontium Titanate Composition
,”
J. Appl. Phys.
,
100
(
2
), p.
024112
.
18.
Fu
,
J. Y.
,
Zhu
,
W.
,
Li
,
N.
,
Smith
,
N. B.
, and
Cross
,
L. E.
,
2007
, “
Gradient Scaling Phenomenon in Microsize Flexoelectric Piezoelectric Composites
,”
Appl. Phys. Lett.
,
91
(
18
), p.
182910
.
19.
Ma
,
W.
, and
Cross
,
L. E.
,
2002
, “
Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State
,”
Appl. Phys. Lett.
,
81
(
18
), pp.
3440
3442
.
20.
Zubko
,
G. P.
,
Catalan
,
A. R.
,
Buckley
,
P.
,
Welche
,
L.
, and
Scott
,
J. F.
,
2007
, “
Strain-Gradient Induced Polarization in SrTiO3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
), p.
167601
.
21.
Ma
,
W.
, and
Cross
,
L. E.
,
2003
, “
Strain-Gradient Induced Electric Polarization in Lead Zirconate Titanate Ceramics
,”
Appl. Phys. Lett.
,
82
(
19
), pp.
3923
3925
.
22.
Chu
,
B.
, and
Salem
,
D. R.
,
2012
, “
Flexoelectricity in Several Thermoplastic and Thermosetting Polymers
,”
Appl. Phys. Lett.
,
101
(
10
), p.
103905
.
23.
Baskaran
,
S.
,
He
,
X.
,
Chen
,
Q.
, and
Fu
,
J. Y.
,
2011
, “
Experimental Studies on the Direct Flexoelectric Effect in α-Phase Polyvinylidene Fluoride Films
,”
Appl. Phys. Lett.
,
98
(
24
), p.
242901
.
24.
Baskaran
,
S.
,
He
,
X.
,
Wang
,
Y.
, and
Fu
,
J. Y.
,
2012
, “
Strain Gradient Induced Electric Polarization in α-Phase Polyvinylidene Fluoride Films Under Bending Conditions
,”
J. Appl. Phys.
,
111
(
1
), p.
014109
.
25.
Sharma
,
N. D.
,
Landis
,
C. M.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
024304
.
26.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
, pp.
209
227
.
27.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Electrets in Soft Materials: Nonlinearity, Size Effects, and Giant Electromechanical Coupling
,”
Phys. Rev. E
,
90
(
1
), p.
012603
.
28.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
.
29.
Sharma
,
N. D.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
18
), p.
2328
.
30.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
206
.
31.
Jiang
,
X.
,
Huang
,
W.
, and
Zhang
,
S.
,
2013
, “
Flexoelectric Nano-Generator: Materials, Structures and Devices
,”
Nano Energy
,
2
(
6
), pp.
1079
1092
.
32.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures
,”
Phys. Rev. B
,
78
(
12
), p.
121407
.
33.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2009
, “
Erratum: Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures [Phys. Rev. B, 78, 121407 (R)(2008)]
,”
Phys. Rev. B
,
79
(
15
), p.
159901
.
34.
Mbarki
,
R.
,
Baccam
,
N.
,
Dayal
,
K.
, and
Sharma
,
P.
,
2014
, “
Piezoelectricity Above the Curie Temperature? Combining Flexoelectricity and Functional Grading to Enable High-Temperature Electromechanical Coupling
,”
Appl. Phys. Lett.
,
104
(
12
), p.
122904
.
35.
Catalan
,
G.
,
Lubk
,
A.
,
Vlooswijk
,
A. H. G.
,
Snoeck
,
E.
,
Magen
,
C.
,
Janssens
,
A.
,
Rispens
,
G.
,
Rijnders
,
G.
,
Blank
,
D. H. A.
, and
Noheda
,
B.
,
2010
, “
Flexoelectric Rotation of Polarization in Ferroelectric Thin Films
,”
Nat. Mater.
,
23
(
1
), p.
963
.
36.
Gharbi
,
M.
,
Sun
,
Z. H.
,
Sharma
,
P.
, and
White
,
K.
,
2009
, “
The Origins of Electromechanical Indentation Size Effect in Ferroelectrics
,”
Appl. Phys. Lett.
,
95
(
14
), p.
142901
.
37.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
,
Catalan
,
G.
, and
Arias
,
I.
,
2015
, “
Fracture Toughening and Toughness Asymmetry Induced by Flexoelectricity
,”
Phys. Rev. B
,
92
(
9
), p.
094101
.
38.
Mao
,
S.
, and
Purohit
,
P.
,
2015
, “
Defects in Flexoelectric Solids
,”
J. Mech. Phys. Solids
,
84
, p.
95
.
39.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Solanas
,
E.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
Flexoelectric MEMS: Towards an Electromechanical Strain Diode
,”
Nanoscale
,
8
(
3
), pp.
1293
1298
.
40.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D. G.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2015
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
(in press).
41.
Wang
,
Z.
,
Zhang
,
X. X.
,
Wang
,
X.
,
Yue
,
W.
,
Li
,
J.
,
Miao
,
J.
, and
Zhu
,
W.
,
2013
, “
Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm
,”
Adv. Funct. Mater.
,
23
(
1
), pp.
124
132
.
42.
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
(
3
), p.
032715
.
43.
Petrov
,
A. G.
, and
Mircevova
,
L.
,
1986
, “
Is Flexoelectricity the Coupling Factor Between Chemical Energy and Osmotic Work in the Pump? A Model of Pump
,”
Gen. Physiol. Biophys.
,
5
(
4
), pp.
391
403
.
44.
Petrov
,
A. G.
,
1975
, “
Flexoelectric Model for Active Transport
,”
Physical and Chemical Bases of Biological Information Transfer
,
Springer
,
New York
, pp.
111
125
.
45.
Rey
,
A. D.
,
2006
, “
Liquid Crystal Model of Membrane Flexoelectricity
,”
Phys. Rev. E
,
74
(
1
), p.
011710
.
46.
Gao
,
L.-T.
,
Feng
,
X.-Q.
,
Yin
,
Y.-J.
, and
Gao
,
H.
,
2008
, “
An Electromechanical Liquid Crystal Model of Vesicles
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2844
2862
.
47.
Zhang
,
P.-C.
,
Keleshian
,
A. M.
, and
Sachs
,
F.
,
2001
, “
Voltage-Induced Membrane Movement
,”
Nature
,
413
(
6854
), pp.
428
432
.
48.
Reichenbach
,
T.
, and
Hudspeth
,
A. J.
,
2014
, “
The Physics of Hearing: Fluid Mechanics and the Active Process of the Inner Ear
,”
Rep. Prog. Phys.
,
77
(
7
), p.
076601
.
49.
Sachs
,
F.
,
Brownell
,
W. E.
, and
Petrov
,
A. G.
,
2009
, “
Membrane Electromechanics in Biology, With a Focus on Hearing
,”
MRS Bull.
,
34
(09), pp.
665
670
.
50.
Raphael
,
R. M.
,
Popel
,
A. S.
, and
Brownell
,
W. E.
,
2000
, “
A Membrane Bending Model of Outer Hair Cell Electromotility
,”
Biophys. J.
,
78
(
6
), pp.
2844
2862
.
51.
Spector
,
A. A.
,
Deo
,
N.
,
Grosh
,
K.
,
Ratnanather
,
J. T.
, and
Raphael
,
R. M.
,
2006
, “
Electromechanical Models of the Outer Hair Cell Composite Membrane
,”
J. Membr. Biol.
,
209
(
2–3
), pp.
135
152
.
52.
Breneman
,
K. D.
, and
Rabbitt
,
R. D.
,
2009
, “
Piezo- and Flexoelectric Membrane Materials Underlie Fast Biological Motors in the Inner Ear
,”
MRS Proc.
,
1186
, p.
1186-JJ06-04
.
53.
Brownell
,
W. E.
,
Spector
,
A. A.
,
Raphael
,
R. M.
, and
Popel
,
A. S.
,
2001
, “
Micro-and Nanomechanics of the Cochlear Outer Hair Cell
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
169
194
.
54.
Breneman
,
K. D.
,
William
,
E. B.
, and
Richard
,
D. R.
,
2009
, “
Hair Cell Bundles: Flexoelectric Motors of the Inner Ear
,”
PLoS One
,
4
(
4
), p.
e5201
.
55.
Abou-Dakka
,
M.
,
Herrera-Valencia
,
E. E.
, and
Rey
,
A. D.
,
2012
, “
Linear Oscillatory Dynamics of Flexoelectric Membranes Embedded in Viscoelastic Media With Applications to Outer Hair Cells
,”
J. Non-Newtonian Fluid Mech.
,
185
, pp.
1
17
.
56.
Stengel
,
M.
,
2013
, “
Flexoelectricity From Density-Functional Perturbation Theory
,”
Phys. Rev. B
,
88
(
17
), p.
174106
.
57.
Derzhanski
,
A.
,
Petrov
,
A. G.
,
Todorov
,
A. T.
, and
Hristova
,
K.
,
1990
, “
Flexoelectricity of Lipid Bilayers
,”
Liq. Cryst.
,
7
(
3
), pp.
439
449
.
58.
Petrov
,
A. G.
,
Ramsey
,
R. L.
, and
Usherwood
,
P. N. R.
,
1989
, “
Curvature-Electric Effects in Artificial and Natural Membranes Studied Using Patch-Clamp Techniques
,”
Eur. Biophys. J.
,
17
(
1
), pp.
13
17
.
59.
Petrov
,
A. G.
, and
Sokolov
,
V. S.
,
1986
, “
Curvature-Electric Effect in Black Lipid Membranes
,”
Eur. Biophys. J.
,
13
(
3
), pp.
139
155
.
60.
Petrov
,
A. G.
,
Miller
,
B. A.
,
Hristova
,
K.
, and
Usherwood
,
P. N. R.
,
1993
, “
Flexoelectric Effects in Model and Native Membranes Containing Ion Channels
,”
Eur. Biophys. J.
,
22
(
4
), pp.
289
300
.
61.
Todorov
,
A. T.
,
Petrov
,
A. G.
, and
Fendler
,
J. H.
,
1994
, “
First Observation of the Converse Flexoelectric Effect in Bilayer Lipid Membranes
,”
J. Phys. Chem.
,
98
(
12
), pp.
3076
3079
.
You do not currently have access to this content.