The equilibrium equations and boundary conditions in terms of the second Piola–Kirchhoff membrane stress and moment are given in this note, which are necessary for the finite deformation analysis of shells.

References

1.
Sanders
,
J. L.
, Jr.
,
1961
, “
Nonlinear Theories for Thin Shells
,”
Q. Appl. Math.
,
21
, pp.
21
36
.
2.
Koiter
,
W. T.
,
1966
, “
On the Nonlinear Theory of Thin Elastic Shells. I. II. III
,”
Proc. K. Ned. Akad. Wet.
, Ser. B,
69
(
1
), pp.
1
54
.
3.
Niordson
,
F. I.
,
1985
,
Shell Theory
,
Elsevier Science Publisher
,
Amsterdam
.
4.
Wu
,
J.
,
Hwang
,
K.
, and
Huang
,
Y.
,
2008
, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
279
292
.10.1016/j.jmps.2007.05.008
5.
Wu
,
J.
,
Hwang
,
K.
, and
Huang
,
Y.
,
2009
, “
A Shell Theory for Carbon Nanotubes Based on the Interatomic Potential and Atomic Structure
,”
Adv. Appl. Mech.
,
43
, pp.
1
68
.10.1016/S0065-2156(09)43001-1
You do not currently have access to this content.