An asymptotically correct, nonlinear, analytical cross-sectional analysis is developed for pretwisted, isotropic beams under axial load and torsion. A comprehensive model is presented that for the first time simultaneously counts for both trapeze and Poynting effects (either positive or negative). Several material models are used and differences are discussed in detail. The limitations of the uniaxial stress assumption and Saint-Venant/Kirchhoff materials are illustrated. Compared to the widely accepted results in the literature, the present theory demonstrates improved results without introducing assumptions commonly used in other works. It is concluded that the trapeze and Poynting phenomena are governed by the material models and warping functions, and nonlinearly coupled extension and torsion can be eliminated by properly selecting the thickness-to-width ratio.

References

1.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
(Progress in Astronautics and Aeronautics), 1st ed., Vol.
213
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, pp.
15
17
.
2.
Campbell
,
A.
,
1912
, “
On Vibration Galvanometers With Unifilar Torsional Control
,”
Proc. Phys. Soc. London
,
25
(
1
), pp.
203
205
.10.1088/1478-7814/25/1/320
3.
Pealing
,
H.
,
1913
, “
XLII. On an Anomalous Variation of the Rigidity of Phosphor Bronze
,”
Philos. Mag. Ser. 6
,
25
(
147
), pp.
418
427
.10.1080/14786440308634177
4.
Buckley
,
J. C.
,
1914
, “
LXXXIV. The Bifilar Property of Twisted Strips
,”
Philos. Mag. Ser. 6
,
28
(
168
), pp.
778
787
.10.1080/14786441208635264
5.
Wagner
,
H.
,
1936
, “
Torsion and Buckling of Open Sections
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. NACA-TM-807.
6.
Biot
,
M. A.
,
1939
, “
Increase of Torsional Stiffness of a Prismatical Bar Due to Axial Tension
,”
J. Appl. Phys.
,
10
(
12
), pp.
860
864
.10.1063/1.1707272
7.
Goodier
,
J. N.
,
1950
, “
Elastic Torsion in the Presence of Initial Axial Stress
,”
ASME J. Appl. Mech.
,
17
(
4
), pp.
383
387
.
8.
Hill
,
R.
,
1959
, “
Some Basic Principles in the Mechanics of Solids Without a Natural Time
,”
J. Mech. Phys. Solids
,
7
(
3
), pp.
209
225
.10.1016/0022-5096(59)90007-9
9.
Houbolt
,
J. C.
, and
Brooks
,
G. W.
,
1957
, “
Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades
,” Langley Aeronautical Laboratory, Hampton, VA, Technical Report No. NACA TN 3905.
10.
Hodges
,
D. H.
, and
Dowell
,
E. H.
,
1974
, “
Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades
,” Ames Research Center and U.S. Army Air Mobility R&D Laboratory, Washington, DC, Technical Report No. NASA TN D-7818.
11.
Borri
,
M.
, and
Merlini
,
T.
,
1986
, “
A Large Displacement Formulation for Anisotropic Beam Analysis
,”
Meccanica
,
21
(
1
), pp.
30
37
.10.1007/BF01556314
12.
Fulton
,
M. V.
, and
Hodges
,
D. H.
,
1993
, “
Aeroelastic Stability of Composite Hingeless Rotor Blades in Hover—Part I: Theory
,”
Math. Comput. Modell.
,
18
(
3/4
), pp.
1
17
.10.1016/0895-7177(93)90101-4
13.
Fulton
,
M. V.
, and
Hodges
,
D. H.
,
1993
, “
Aeroelastic Stability of Composite Hingeless Rotor Blades in Hover—Part II: Results
,”
Math. Comput. Modell.
,
18
(
3/4
), pp.
19
35
.10.1016/0895-7177(93)90102-5
14.
Hodges
,
D. H.
,
Harursampath
,
D.
,
Volovoi
,
V. V.
, and
Cesnik
,
C. E. S.
,
1999
, “
Non-Classical Effects in Non-Linear Analysis of Pretwisted Anisotropic Strips
,”
Int. J. Non Linear Mech.
,
34
(
2
), pp.
259
277
.10.1016/S0020-7462(98)00023-7
15.
Popescu
,
B.
, and
Hodges
,
D. H.
,
1999
, “
Asymptotic Treatment of the Trapeze Effect in Finite Element Cross-Sectional Analysis of Composite Beams
,”
Int. J. Non Linear Mech.
,
34
(
4
), pp.
709
721
.10.1016/S0020-7462(98)00049-3
16.
Armanios
,
E. A.
,
Makeev
,
A.
, and
Hooke
,
D.
,
1996
, “
Finite-Displacement Analysis of Laminated Composite Strips With Extension-Twist Coupling
,”
J. Aerosp. Eng.
,
9
(
3
), pp.
80
91
.10.1061/(ASCE)0893-1321(1996)9:3(80)
17.
Cesnik
,
C. E. S.
,
Hodges
,
D. H.
,
Popescu
,
B.
, and
Harursampath
,
D.
,
1996
, “
Composite Beams Cross-Sectional Modeling Including Obliqueness and Trapeze Effects
,”
37th Structures, Structural Dynamics and Materials Conference
, Salt Lake City, UT, Apr. 15–17,
AIAA
Paper No. 96-1469, pp.
1384
1397
.10.2514/6.1996-1469
18.
Cesnik
,
C. E. S.
,
Hodges
,
D. H.
, and
Sutyrin
,
V. G.
,
1996
, “
Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature Effects
,”
AIAA J.
,
34
(
9
), pp.
1913
1920
.10.2514/3.13325
19.
Okubo
,
H.
,
1952
, “
The Torsion and Stretching of Spiral Rods (1st Report)
,”
Trans. Jpn. Soc. Mech. Eng.
,
18
(
68
), pp.
11
15
.10.1299/kikai1938.18.68_11
20.
Okubo
,
H.
,
1953
, “
The Torsion and Stretching of Spiral Rods (3rd Report)
,”
Trans. Jpn. Soc. Mech. Eng.
,
19
(
83
), pp.
29
34
.10.1299/kikai1938.19.83_29
21.
Chu
,
C.
,
1951
, “
The Effect of Initial Twist on the Torsional Rigidity of Thin Prismatical Bars and Tubular Members
,”
First U.S. National Congress of Applied Mechanics, National Congress of Applied Mechanics, American Society of Mechanical Engineers (ASME)
, Vol.
1
, pp.
265
296
.
22.
Shorr
,
B. F.
,
1980
, “
Theory of Twisted Nonuniformly Heated Bars
,” Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk Mekhan. i Mashinostr. (USSR), Washington, DC, Technical Report No. NASA-TM-7575, N80-19565.
23.
Petersen
,
D.
,
1982
, “
Interaction of Torsion and Tension in Beam Theory
,”
Vertica
,
6
, pp.
311
325
.
24.
Washizu
,
K.
,
1964
, “
Some Considerations on Naturally Curved and Twisted Slender Beam
,”
J. Math. Phys.
,
43
(
2
), pp.
111
116
.
25.
Ohtsuka
,
M.
,
1975
, “
Untwist of Rotating Blades
,”
ASME J. Eng. Gas Turbines Power
,
97
(
2
), pp.
180
187
.10.1115/1.3445954
26.
Hodges
,
D. H.
,
1980
, “
Torsion of Pretwisted Beams Due to Axial Loading
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
393
397
.10.1115/1.3153675
27.
Rosen
,
A.
,
1980
, “
The Effect of Initial Twist on the Torsional Rigidity of Beams—Another Point of View
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
389
392
.10.1115/1.3153674
28.
Rosen
,
A.
,
1983
, “
Theoretical and Experimental Investigation of the Nonlinear Torsion and Extension of Initially Twisted Bars
,”
ASME J. Appl. Mech.
,
50
(
2
), pp.
321
326
.10.1115/1.3167039
29.
Rosen
,
A.
,
Loewy
,
R. G.
, and
Mathew
,
M. B.
,
1987
, “
Nonlinear Analysis of Pretwisted Rods Using Principal Curvature Transformation. I—Theoretical Derivation
,”
AIAA J.
,
25
(
3
), pp.
470
478
.10.2514/3.9647
30.
Rosen
,
A.
,
1991
, “
Structural and Dynamic Behavior of Pretwisted Rods and Beams
,”
ASME Appl. Mech. Rev.
,
44
(
12
), pp.
483
515
.10.1115/1.3119490
31.
Shield
,
R. T.
,
1982
, “
Extension and Torsion of Elastic Bars With Initial Twist
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
779
786
.10.1115/1.3162617
32.
Krenk
,
S.
,
1983
, “
The Torsion-Extension Coupling in Pretwisted Elastic Beams
,”
Int. J. Solids Struct.
,
19
(
1
), pp.
67
72
.10.1016/0020-7683(83)90038-0
33.
Krenk
,
S.
,
1983
, “
A Linear Theory for Pretwisted Elastic Beams
,”
ASME J. Appl. Mech.
,
50
(
1
), pp.
137
142
.10.1115/1.3166980
34.
Poynting
,
J. H.
,
1909
, “
On Pressure Perpendicular to the Shear Planes in Finite Pure Shears, and on the Lengthening of Loaded Wires When Twisted
,”
Proc. R. Soc. London, Ser. A
,
82
(
557
), pp.
546
559
.10.1098/rspa.1909.0059
35.
Poynting
,
J. H.
,
1912
, “
On the Changes in the Dimensions of a Steel Wire When Twisted, and on the Pressure of Distortional Waves in Steel
,”
Proc. R. Soc. London, Ser. A
,
86
(
590
), pp.
534
561
.10.1098/rspa.1912.0045
36.
Foux
,
A.
,
1964
, “
An Experimental Investigation of the Poynting Effect
,”
International Symposium on the Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics
, Haifa, Israel, Apr. 23–27, pp.
228
251
.
37.
Billington
,
E. W.
,
1977
, “
Non-Linear Mechanical Response of Various Metals. I. Dynamic and Static Response to Simple Compression, Tension and Torsion in the As-Received and Annealed States
,”
J. Phys. D: Appl. Phys.
,
10
(
4
), pp.
519
531
.10.1088/0022-3727/10/4/016
38.
Billington
,
E. W.
,
1986
, “
The Poynting Effect
,”
Acta Mech.
,
58
(
1–2
), pp.
19
31
.10.1007/BF01177103
39.
Wack
,
B.
,
1989
, “
The Torsion of a Tube (or a Rod): General Cylindrical Kinematics and Some Axial Deformation and Ratchet Measurements
,”
Acta Mech.
,
80
(
1–2
), pp.
39
59
.10.1007/BF01178179
40.
Freudenthal
,
A. M.
, and
Ronay
,
M.
,
1966
, “
Second Order Effects in Dissipative Media
,”
Proc. R. Soc. London, Ser. A
,
292
(
1428
), pp.
14
50
.10.1098/rspa.1966.0117
41.
Rivlin
,
R. S.
, and
Saunders
,
D.
,
1951
, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc., A
,
243
(
865
), pp.
251
288
.10.1098/rsta.1951.0004
42.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
43.
Shield
,
R. T.
,
1980
, “
An Energy Method for Certain Second-Order Effects With Application to Torsion of Elastic Bars Under Tension
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
75
81
.10.1115/1.3153641
44.
Jiang
,
X.
, and
Ogden
,
R. W.
,
2000
, “
Some New Solutions for the Axial Shear of a Circular Cylindrical Tube of Compressible Elastic Material
,”
Int. J. Non Linear Mech.
,
35
(
2
), pp.
361
369
.10.1016/S0020-7462(99)00041-4
45.
Brigadnov
,
I. A.
,
2015
, “
Power Law Type Poynting Effect and Non-Homogeneous Radial Deformation in the Boundary-Value Problem of Torsion of a Nonlinear Elastic Cylinder
,”
Acta Mech.
,
226
(4), pp.
1309
1317
.10.1007/s00707-014-1243-9
46.
Anand
,
L.
,
1979
, “
On H. Hencky's Approximate Strain-Energy Function for Moderate Deformations
,”
ASME J. Appl. Mech.
,
46
(
1
), pp.
78
82
.10.1115/1.3424532
47.
Anand
,
L.
,
1986
, “
Moderate Deformations in Extension-Torsion of Incompressible Isotropic Elastic Materials
,”
J. Mech. Phys. Solids
,
34
(
3
), pp.
293
304
.10.1016/0022-5096(86)90021-9
48.
Horgan
,
C. O.
, and
Murphy
,
J. G.
,
2009
, “
A Generalization of Hencky's Strain-Energy Density to Model the Large Deformations of Slightly Compressible Solid Rubbers
,”
Mech. Mater.
,
41
(
8
), pp.
943
950
.10.1016/j.mechmat.2009.03.001
49.
Bruhns
,
O. T.
,
Xiao
,
H.
, and
Meyers
,
A.
,
2000
, “
Hencky's Elasticity Model With the Logarithmic Strain Measure: A Study on Poynting Effect and Stress Response in Torsion of Tubes and Rods
,”
Arch. Mech.
,
52
(
4–5
), pp.
489
509
.
50.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.10.1038/nature03521
51.
Janmey
,
P. A.
,
McCormick
,
M. E.
,
Rammensee
,
S.
,
Leight
,
J. L.
,
Georges
,
P. C.
, and
MacKintosh
,
F. C.
,
2007
, “
Negative Normal Stress in Semiflexible Biopolymer Gels
,”
Nat. Mater.
,
6
(
1
), pp.
48
51
.10.1038/nmat1810
52.
Zubov
,
L. M.
,
2001
, “
Direct and Inverse Poynting Effects in Elastic Cylinders
,”
Dokl. Phys.
,
46
(
9
), pp.
675
677
.10.1134/1.1409001
53.
Mihai
,
L. A.
, and
Goriely
,
A.
,
2011
, “
Positive or Negative Poynting Effect? The Role of Adscititious Inequalities in Hyperelastic Materials
,”
Proc. R. Soc. A
,
467
(
2136
), pp.
3633
3646
.10.1098/rspa.2011.0281
54.
Mihai
,
L. A.
, and
Goriely
,
A.
,
2013
, “
Numerical Simulation of Shear and the Poynting Effects by the Finite Element Method: An Application of the Generalised Empirical Inequalities in Non-Linear Elasticity
,”
Int. J. Non Linear Mech.
,
49
, pp.
1
14
.10.1016/j.ijnonlinmec.2012.09.001
55.
Wang
,
D.
, and
Wu
,
M. S.
,
2014
, “
Poynting and Axial Force–Twist Effects in Nonlinear Elastic Mono- and Bi-Layered Cylinders: Torsion, Axial and Combined Loadings
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1003
1019
.10.1016/j.ijsolstr.2013.11.027
56.
Kanner
,
L. M.
, and
Horgan
,
C. O.
,
2008
, “
On Extension and Torsion of Strain-Stiffening Rubber-Like Elastic Circular Cylinders
,”
J. Elasticity
,
93
(
1
), pp.
39
61
.10.1007/s10659-008-9164-2
57.
Horgan
,
C. O.
, and
Murphy
,
J. G.
,
2012
, “
Finite Extension and Torsion of Fiber-Reinforced Non-Linearly Elastic Circular Cylinders
,”
Int. J. Non Linear Mech.
,
47
(
2
), pp.
97
104
.10.1016/j.ijnonlinmec.2011.03.003
58.
Wu
,
M. S.
, and
Wang
,
D.
,
2015
, “
Nonlinear Effects in Composite Cylinders: Relations and Dependence on Inhomogeneities
,”
Int. J. Eng. Sci.
,
90
, pp.
27
43
.10.1016/j.ijengsci.2015.01.006
59.
Berdichevsky
,
V. L.
,
2009
,
Variational Principles of Continuum Mechanics: I. Fundamentals
, 1st ed.,
Springer-Verlag
,
La Vergne, TN
, pp.
243
269
.
60.
Yu
,
W.
,
Hodges
,
D. H.
, and
Ho
,
J. C.
,
2012
, “
Variational Asymptotic Beam Sectional Analysis—An Updated Version
,”
Int. J. Eng. Sci.
,
59
, pp.
40
64
.10.1016/j.ijengsci.2012.03.006
61.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
.10.1115/1.3173004
62.
Hodges
,
D. H.
,
1999
, “
Non-Linear Inplane Deformation and Buckling of Rings and High Arches
,”
Int. J. Non Linear Mech.
,
34
(
4
), pp.
723
737
.10.1016/S0020-7462(98)00050-X
63.
Hodges
,
D. H.
,
1990
, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
,
26
(
11
), pp.
1253
1273
.10.1016/0020-7683(90)90060-9
64.
Hodges
,
D. H.
,
Atilgan
,
A. R.
,
Cesnik
,
C. E. S.
, and
Fulton
,
M. V.
,
1992
, “
On a Simplified Strain Energy Function for Geometrically Nonlinear Behaviour of Anisotropic Beams
,”
Compos. Eng.
,
2
(
5
), pp.
513
526
.10.1016/0961-9526(92)90040-D
65.
Popescu
,
B.
, and
Hodges
,
D. H.
,
2000
, “
On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory
,”
Int. J. Solids Struct.
,
37
(
3
), pp.
535
558
.10.1016/S0020-7683(99)00020-7
66.
Yu
,
W.
, and
Hodges
,
D. H.
,
2004
, “
Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
15
23
.10.1115/1.1640367
67.
Yu
,
W.
,
Hodges
,
D. H.
,
Volovoi
,
V.
, and
Cesnik
,
C. E. S.
,
2002
, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
,
39
(
19
), pp.
5101
5121
.10.1016/S0020-7683(02)00399-2
68.
Yu
,
W.
,
Volovoi
,
V. V.
,
Hodges
,
D. H.
, and
Hong
,
X.
,
2002
, “
Validation of the Variational Asymptotic Beam Sectional Analysis
,”
AIAA J.
,
40
(
10
), pp.
2105
2112
.10.2514/2.1545
69.
Degener
,
M.
,
Hodges
,
D. H.
, and
Petersen
,
D.
,
1988
, “
Analytical and Experimental Study of Beam Torsional Stiffness With Large Axial Elongation
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
171
178
.10.1115/1.3173624
70.
Sicard
,
J. F.
, and
Sirohi
,
J.
,
2014
, “
An Analytical Investigation of the Trapeze Effect Acting on a Thin Flexible Ribbon
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
121007
.10.1115/1.4028781
You do not currently have access to this content.