A series of blast loading experiments are performed with the aim of providing experimental data for the development and adjustment of numerical tools needed in the modeling of concrete elements subjected to blast. To this end, an experimental setup that allows testing up to four concrete elements simultaneously under the same blast load is developed. Altogether four detonation tests are conducted, in which 12 slabs of two different concrete types are subjected to the same blast load. Results of the experimental program are validated by numerical simulation using two different material models for the prediction of concrete behavior. Major assets of the experimental setup presented are the reduction of scattering on detonation tests and its cost effectiveness. Results from tests and numerical simulations suggest that the ability of reinforced concrete structures of withstanding blast loads is primarily governed by their tensile strength.

References

1.
Kinney
,
G. F.
, and
Graham
,
K. J.
, 1985,
Explosive Shocks in Air
,
Springer-Verlag
,
New York
.
2.
Held
,
M.
, 2009, “
Blast Load Diagnostic
,”
Propellants Explos., Pyrotech.
34
,
194
209
.
3.
Cullis
,
I. G.
,
Gillbert
,
J.
,
Greenwood
,
P.
, and
Pang
,
R.
, 1996, “
Blast Wave Scaling and Its Importance in Structural Loading
,”
Proceedings of the 16th International Symposium on Ballistics
,
American Defence Preparedness Association
,
Sam Francisco, CA
.
4.
Huntington-Thresher
,
W.
, and
Cullis
,
I. G.
, 2001, “
TNT Blast Scaling for Small Charges
,”
Proceedings of the 19th International Symposium on Ballistics
,
I. R.
Crewther
, ed.,
Interlaken
,
Switzerland
.
5.
Wharton
,
R. K.
,
Formby
,
S. A.
and
Merrifield
,
R.
, 2000, “
Airblast TNT Equivalence for a Range of Commercial Blasting Explosives
,”
J. Hazard. Mater. A
79
,
31
39
.
6.
Held
,
M.
, 2008, “
Blast Impulse at Very Near Distance
,”
Propellants Explos., Pyrotech.
33
,
353
359
.
7.
Held
,
M.
, 2010, “
Impulse Density Measurements After the Held Method
,”
Propellants Explos., Pyrotech.
35
,
164
168
.
8.
Remennikov
,
A. M.
, 2003, “
A Review of Methods for Predicting Bomb Blast Effects on Buildings
,”
J. Battlefield Technol.
,
6
(
3
),
5
10
.
9.
Remennikov
,
A. M.
, and
Rose
,
T. A.
, 2005, “
Modelling Blast Loads on Buildings in Complex City Geometries
,”
Comput. Structures
83
,
2197
2205
.
10.
Luccioni
,
B.
,
Ambrosini
,
D.
, and
Danesi
,
R.
, 2006, “
Blast Load Assessment Using Hydrocodes
,”
Eng. Struct.
28
,
1736
1744
.
11.
Ambrosini
,
D.
,
Luccioni
,
B.
,
Jacinto
,
A.
, and
Danesi
,
R.
, “
Location and Mass of Explosive From Structural Damage
,”
Eng. Struct.
27
,
167
176
.
12.
Department of Defense, USA, 2005, “Design of Buildings to Resist Progressive Collapse,” Unified Facilities Criteria, UFC4-023-03.
13.
Luccioni
,
B. M.
,
Ambrosini
,
R. D.
, and
Danesi
,
R. F.
, 2004, “
Analysis of Building Collapse Under Blast Loads
,”
Eng. Struct.
26
,
63
71
.
14.
Eytan
,
R.
, 1992, “
Response of Real Structures to Blast Loading - the Israeli Experience
,”
Proceedings of the 2nd International Conference on Structures under Shock and Impact
, Portsmouth, UK.
Computational Mechanics Publications
,
Southampton, UK
.
15.
Crawford
,
J. E.
,
Malvar
,
L. J.
,
Morrill
,
K. B.
, and
Ferritto
,
J. M.
, 2001, “
Composite Retrofit of Reinforced Concrete Structures to Resist Blast Effects
,”
Proc. 10th International Symposium Interaction of the Effects of Munition with Structures
.
16.
Krauthammer
,
T.
, 1999, “
Blast-Resistant Structural Concrete and Steel Connections
,”
Int. J. Impact Eng.
22
,
887
910
.
17.
Cullis
,
I. G.
,
Schofield
,
J.
, and
Whitby
,
A.
, 2010, “
Assessment of Blast Loading Effects - Types of Explosion and Loading Effects
,”
Int. J. Pressure Vessels Piping
87
,
493
503
.
18.
Malvar
,
L. J.
,
Crawford
,
J. E.
,
Wesevich
,
J. W.
, and
Simons
,
D.
, 1997, “
A plasticity Concrete Material Model for DYNA3D
,”
Int. Impact Eng.
19
,
847
873
.
19.
Broadhouse
,
B. J.
, and
Attwood
,
G. J.
, 1993, “
Finite Element Analysis of the Impact Response of Reinforced Concrete Structures Using Dyna3D
,”
Proceedings of the 12th International Conference on Structural Mechanics in Reactor Technology
, K. Kussmaul,
Stuttgart, Germany
.
20.
Broadhouse
,
B. J.
, and
Neilson
,
A. J.
, 1987, “
Modelling Reinforced Concrete Structures in DYNA3D
,” Report of the Safety and Engineering Science Division, AEE Winfrith, AEEW-M 2465.
21.
Broadhouse
,
B. J.
, 1995, “
The Winfrith concrete model in LS-DYNA3D
,” Report: SPD/D(95)363,
Structural Performance Department, AEA Technology, Winfrith Technology Centre
, UK.
22.
Holmquist
,
T. J.
,
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1993, “
A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures
,”
Proceedings of the 14th International Symposium on Ballistics
,
Québec City, Canada
. Editors:
M. J.
Murphy
and
J .E.
Backofen
.
23.
LSTC, 2007, LS-DYNA Keyword User’s Manual, Version 971, Livermore Software Technology Corporation.
24.
AUTODYN
, 2001, Interactive non-linear dynamic analysis software, version 4.2, user’s manual, Century Dynamics Inc.
25.
Gebbeken
,
N.
, and
Ruppert
,
M.
, 2000, “
A new material model for concrete in high-dynamic hydrocode simulations
,”
Arch. Appl. Mech.
70
,
463
478
.
26.
Chen
,
W. F.
,
Plasticity in Reinforced Concrete
(
McGraw-Hill
,
New York
, 1982).
27.
Comité Euro-International du Béton, 1988, Bulletin d´Information 187. Concrete structures under impact and impulsive loading, Dubrovnik, Croatia.
28.
Zielinski
,
A. J.
, and
Reinhardt
,
H. W.
, 1982, “
Stress–strain behaviour of concrete and mortar at high rates of tensile loading
,”
Cement Concrete Res.
12
(
3
),
309
319
.
29.
Bischoff
,
P. H.
, and
Perry
,
S. H.
, 1991, “
Compressive behavior of concrete at high strain rates
,”
Mater. Struct.
24
(
6
),
425
450
.
30.
Zhou
,
X. Q.
,
Kuznetsov
,
V. A.
,
Hao
,
H.
, and
Waschl
,
J.
, 2008, “
Numerical prediction of slab response to blast loading
,”
Int. J. Impact Eng.
35
,
1186
1200
.
31.
Luccioni
,
B.
, and
Luege
,
M.
, 2006, “
Concrete pavement slab under blast loads
,”
Int. J. Impact Eng.
32
,
1248
1266
.
32.
Mays
,
G. C.
,
Hetherington
,
J. G.
, and
Rose
,
T. A.
, 1999, “
Response to blast loading of concrete wall panels with openings
,”
ASCE J. Struct. Eng.
125
.
33.
Ellis
,
B. R.
, and
Tsui
,
F.
, 1997, “
Testing and analysis of reinforced concrete panels subject to explosive and static loading
,”
Proc. Instn Civ. Engrs Structs & Bldgs
,
122
,
293
304
.
34.
Magnusson
,
J.
, and
Hallgren
,
M.
, 2000, “
High performance concrete beams subjecteded to shock waves from air blast
,” FOA (Defence Research Establishment) Test Report, Tumba, Sweden.
35.
Magnusson
,
J.
, and
Hallgren
,
M.
, 2004, “
Reinforced high strength concrete beams subjecteded to air blast loading
,” Structures under shock and impact VIII.
36.
Schenker
,
A.
Anteby
,
I.
Gal
,
E.
Kivity
,
Y.
Nizri
,
E.
Sadot
,
O.
Michaelis
,
R.
Levintant
,
O.
, and
Ben-Dor
,
G.
, 2008, “
Full-scale field tests of concrete slabs subjected to blast loads
,”
Int. J. Impact Eng.
35
,
184
198
.
37.
Razaqpur
,
A. G.
,
Tolba
,
A.
, and
Contestabile
,
E.
, 2007, “
Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates
,”
Composites, Part B
38
,
535
546.
38.
Bangash
,
M. Y. H.
,
Impact and Explosions
(
Blackwell Scientific
,
Oxford, UK
), 1993).
39.
Toutlemonde
,
F.
Rossi
,
P.
Boulay
,
C.
Gourraud
,
C.
, and
Guedon
,
D.
, 1995, “
Dynamic behaviour of concrete: tests of slabs with a shock tube
,”
Mater. Struct.
28
,
293
298
.
40.
Paik
,
J. K.
, 2009 “
Mechanical properties of friction stir welded aluminum alloys 5083 and 5383
,”
International Journal of Naval Architecture and Ocean Engineering
1
,
39
49
.
41.
Wittmann
,
F. H.
,
Rokugo
,
K.
,
Brühwiler
,
E.
Mihashi
,
H.
, and
Simonin
,
P.
, 1988, “
Fracture energy and strain softening of concrete as determined by means of compact tension specimens
,”
Mater. Struct.
,
21
,
21
32
.
42.
Ottosen
,
N. S.
, 1980, “
Nonlinear finite element analysis of concrete structures
,” Report: Riso-R-411,
Riso National Laboratory
, Roskilde, Denmark.
43.
Govindjee
,
S.
Kay
,
G. J.
, and
Simó
,
J. C.
, 1995, “
Anisotropic modelling and numerical simulation of brittle damage in concrete
,”
Int. J. Numer. Methods Eng.
,
38
,
3611
3633
.
44.
Govindjee
,
S.
,
Kay
,
G. J.
, and
Simó
,
J. C.
, 1994, “
Anisotropic modelling and numerical simulation of brittle damage in concrete
,” Report No. UCB/SEMM-94/18,
Department of Civil Engineering, University of California
, Berkeley, USA.
45.
Comité Euro-International du Béton, 1998, Model Code 1990, Thomas Telford Services Ltd., London, UK.
You do not currently have access to this content.