The traveling charge (TC) concept is theoretically capable of producing higher muzzle velocities without a large increase in maximum operating pressure, compared with the conventional charge. This work presents experimental and numerical studies on a 35 mm test gun system using liquid fuels as traveling charge. Eight firings with 2 different configurations of booster charge and traveling charge are performed in this paper. The firing experimental results indicate that the liquid traveling charge configuration performs better, in terms of increased muzzle velocity, than a conventional propellant charge by approximately 94 m/s, corresponding to about 8% velocity increase. A mathematical model for the two-phase flows in the 35 mm test gun system using liquid fuels as traveling charge is established and simulated by using the two-phase flow method and computational fluid dynamics technology. The mathematical model for the two-phase gas-dynamical processes consists of a system of first-order, nonlinear coupled partial differential equations. An adaptive grid generation algorithm is developed to account for the expansion of the computational domain due to the motion of the system’s payload in the tube. The numerical code is well validated by comparing its predictions with the experimental results. The calculated pressure-time profiles and projectile muzzle velocity are in good agreement with the experimental data. The numerical results show that the mathematical model developed gives the correct trend and can provide useful calculated parameters for the structural design of liquid traveling charge.

References

1.
Smith
,
M. G.
, 1964, “
An Investigation of the Use of Porous Propellants in a Traveling Charge Gun
,” BRL Memorandum Report No. 1554,
U.S. Army Ballistic Research Laboratory
, Aberdeen Proving Ground, Aberdeen, MD.
2.
Tompkins
,
R. E.
,
White
,
K. J.
,
Oberle
,
W. F.
, and
Juhasz
,
A. A.
, 1986, “
Combustion Diagnostics and Ballistic Results of Proposed Traveling Charge Propellant
,” Technical Report BRL-TR-2902,
U.S. Army Ballistic Research Laboratory
, Aberdeen Proving Ground, Aberdeen, MD.
3.
Oberle
,
W. F.
,
White
,
K. J.
,
Tompkins
,
R. E.
, and
Juhasz
,
A. A.
, 1987, “
Traveling Charge Computations-Experimental Comparisons and Sensitivity Studies
,” Technical Report BRL-TR-2844,
U.S. Army Ballistic Research Laboratory
, Aberdeen Proving Ground, Aberdeen, MD.
4.
Oberle
,
W. F.
,
Wren
,
G. P.
,
Robbins
,
F. W.
,
White
,
K. J.
,
Tompkins
,
R. E.
, and
Juhasz
,
A. A.
, 1988, “
Parameters for Optimizing a Traveling Charge Gun System
,” Technical Report BRL-TR-2910,
U.S. Army Ballistic Research Laboratory
, Aberdeen Proving Ground, Aberdeen, MD.
5.
Li
,
F.
,
Zhang
,
Q. F.
,
Zhang
,
Z. D.
, and
Jin
Z. M.
, 1997, “
The Application of Disk Propellants in Traveling Charge
,”
Acta Armamentarii
,
18
(
2
), pp.
174
177
.http://dx.doi.org/CNKI:SUN:BIGO.0.1997-02-018http://dx.doi.org/CNKI:SUN:BIGO.0.1997-02-018
6.
Wang
,
H.
,
Zhang
,
Z. D.
,
Chen
,
J. Z.
, and
Li
,
Y. E.
, 1996, “
A Classical Interior Ballistics Model and Experimental Study of the Traveling Charge Technique
,”
Acta Armamentarii
,
17
(
4
), pp.
298
302
.http://dx.doi.org/CNKI:SUN:BIGO.0.1996-04-002http://dx.doi.org/CNKI:SUN:BIGO.0.1996-04-002
7.
Tompkins
,
R. E.
,
White
,
K. J.
,
Oberle
,
W. F.
, and
Juhasz
,
A. A.
, 1989, “
Traveling Charge Gun Firings Using Very High Burning Rate Propellants
,” Technical Report BRL-TR-2970,
U.S. Army Ballistic Research Laboratory
, Aberdeen Proving Ground, Aberdeen, MD.
8.
Li
,
F.
, and
Luo
,
Y. J.
, 1999, “
The Simulation of Disk Traveling Two Phase Flow
,”
Chin. J. Appl. Mech.
,
16
(
3
), pp.
1
6
.http://dx.doi.org/CNKI:SUN:YYLX.0.1999-03-000http://dx.doi.org/CNKI:SUN:YYLX.0.1999-03-000
9.
Wang
,
H.
, 1998, “
Interior Ballistic Simulation and Computation of Two-Phase Flow of Traveling Charge
,”
J. Ballist.
,
10
(
4
), pp.
31
36
.http://dx.doi.org/CNKI:SUN:DDXB.0.1998-04-006http://dx.doi.org/CNKI:SUN:DDXB.0.1998-04-006
10.
Lu
,
X.
,
Zhou
,
Y. H.
,
Yu
,
Y. G.
, and
Guan
,
H. Z.
, 1998, “
The Numerical Simulation of Bulk Liquid Traveling Charge Combustion
,”
Explos. Shock Waves
,
18
(
3
), pp.
203
207
.http://dx.doi.org/CNKI:SUN:BZCJ.0.1998-03-002http://dx.doi.org/CNKI:SUN:BZCJ.0.1998-03-002
11.
Yang
,
J. G.
, and
Yu
,
Y. G.
, 2009, “
The One-Dimensional Interior Ballistic Aerodynamic Model and Numerical Simulation of Traveling Charge
,”
Chin. J. Explos. Propellants
,
32
(
1
), pp.
13
16
.http://dx.doi.org/CNKI:SUN:BGXB.0.2009-01-004http://dx.doi.org/CNKI:SUN:BGXB.0.2009-01-004
12.
Zhou
,
Y. H.
and
Wang
,
S. C.
, 1990,
Applied Two-phase Flow Interior Ballistics
,
Ordnance Industry Press
,
Beijing
, pp.
300
301
.
You do not currently have access to this content.