This paper deals with the inverse problem of finding a suitable integrand so that upon the use of the calculus of variations, one obtains the equations of motion for systems in which the forces are nonpotential. New extensions and generalizations of previous results are obtained.

1.
Bolza
,
O.
, 1931,
Vorlesungen über Varationsrechnung
,
Koehler und Amelang
,
Leipzig
.
2.
Douglas
,
J.
, 1939, “
Solution of the Inverse Problem of the Calculus of Variations
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
25
, pp.
631
637
.
3.
Douglas
,
J.
, 1940, “
Theorems in the Inverse Problem in the Calculus of Variations
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
26
, pp.
215
221
.
4.
Leitmann
,
G.
, 1963, “
Some Remarks on Hamilton’s Principle
,”
ASME J. Appl. Mech.
0021-8936,
30
, pp.
623
625
.
5.
He
,
J. -H.
, 2004, “
Variational Principles for Some Nonlinear Partial Differential Equations With Variable Coefficients
,”
Chaos, Solitons Fractals
0960-0779,
19
, pp.
847
851
.
6.
Leitmann
,
G.
, 1986,
The Calculus of Variations and Optimal Control: An Introduction
,
Springer
,
New York
.
7.
Musielak
,
Z. E.
, 2008, “
Standard and Non-Standard Lagrangians for Dissipative Dynamical Systems With Variable Coefficients
,”
J. Phys. A: Math. Theor.
1751-8113,
41
, p.
055205
.
You do not currently have access to this content.