The stationary probability density function (PDF) solution of the stochastic responses is derived for nonlinear oscillators subjected to both additive and multiplicative Poisson white noises. The PDF solution is governed by the generalized Fokker–Planck–Kolmogorov (FPK) equation and obtained with the exponential-polynomial closure (EPC) method, which was originally proposed for solving the FPK equation. The extended EPC solution procedure is presented for the case of Poisson pulses in this paper. In order to evaluate the effectiveness of the solution procedure, nonlinear oscillators are investigated under multiplicative Poisson white noise excitation on velocity and additive Poisson white noise excitation. Both weakly and strongly nonlinear oscillators are considered, respectively. In the numerical analysis, both the unimodal and bimodal stationary PDFs of oscillator responses are obtained with the EPC method and Monte Carlo simulation. Compared with the simulation results, good agreement is achieved with the presented solution procedure in the case of the polynomial degree being 6, especially in the tail regions of the PDFs of the system responses.

1.
Wong
,
E.
, and
Zakai
,
M.
, 1965, “
On the Convergence of Ordinary Integrals to Stochastic Integrals
,”
Ann. Math. Stat.
0003-4851,
36
, pp.
1560
1564
.
2.
Stratonovich
,
R. L.
, 1966, “
A New Representation for Stochastic Integrals and Equations
,”
SIAM J. Control
0036-1402,
4
, pp.
362
371
.
3.
Di Paola
,
M.
, and
Falsone
,
G.
, 1993, “
Stochastic Dynamics of Nonlinear Systems Driven by Non-Normal Delta-Correlated Processes
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
141
148
.
4.
Di Paola
,
M.
, and
Falsone
,
G.
, 1993, “
Itô and Stratonovich Integrals for Delta-Correlated Processes
,”
Probab. Eng. Mech.
0266-8920,
8
, pp.
197
208
.
5.
Di Paola
,
M.
, and
Falsone
,
G.
, 1994, “
Non-Linear Oscillators Under Parametric and External Poisson Pulses
,”
Nonlinear Dyn.
0924-090X,
5
, pp.
337
352
.
6.
Caddemi
,
S.
, and
Di Paola
,
M.
, 1996, “
Ideal and Physical White Noise in Stochastic Analysis
,”
Int. J. Non-Linear Mech.
0020-7462,
31
, pp.
581
590
.
7.
Di Paola
,
M.
, and
Vasta
,
M.
, 1997, “
Stochastic Integro-Differential and Differential Equations of Non-Linear Systems Excited by Parametric Poisson Pulses
,”
Int. J. Non-Linear Mech.
0020-7462,
32
, pp.
855
862
.
8.
Di Paola
,
M.
, and
Pirrotta
,
A.
, 2004, “
Direct Derivation of Corrective Terms in SDE Through Nonlinear Transformation on Fokker-Planck Equation
,”
Nonlinear Dyn.
0924-090X,
36
, pp.
349
360
.
9.
Pirrotta
,
A.
, 2007, “
Multiplicative Cases From Additive Cases: Extension of Kolmogorov–Feller Equation to Parametric Poisson White Noise Processes
,”
Probab. Eng. Mech.
0266-8920,
22
, pp.
127
135
.
10.
Hu
,
S. L. J.
, 1993, “
Responses of Dynamic Systems Excited by Non-Gaussian Pulse Processes
,”
J. Eng. Mech.
0733-9399,
119
, pp.
1818
1827
.
11.
Hu
,
S. L. J.
, 1994, “
Closure on Discussion by Di Paola, M, and Falsone, G, on Responses of Dynamic Systems Excited by Non-Gaussian Pulse Processes
,”
J. Eng. Mech.
0733-9399,
120
, pp.
2473
2474
.
12.
Grigoriu
,
M.
, 1998, “
The Itô and Stratonovich Integrals for Stochastic Differential Equations With Poisson White Noise
,”
Probab. Eng. Mech.
0266-8920,
13
, pp.
175
182
.
13.
Roberts
,
J. B.
, 1972, “
System Response to Random Impulses
,”
J. Sound Vib.
0022-460X,
24
, pp.
23
34
.
14.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1992, “
Response Distribution of Non-Linear Systems Excited by Non-Gaussian Impulsive Noise
,”
Int. J. Non-Linear Mech.
0020-7462,
27
, pp.
955
967
.
15.
Köylüoğlu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Iwankiewicz
,
R.
, 1994, “
Reliability of Non-Linear Oscillators Subject to Poisson Driven Impulses
,”
J. Sound Vib.
0022-460X,
176
, pp.
19
33
.
16.
Köylüoğlu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Iwankiewicz
,
R.
, 1995, “
Response and Reliability of Poisson-Driven Systems by Path Integration
,”
J. Eng. Mech.
0733-9399,
121
, pp.
117
130
.
17.
Köylüoğlu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Çakmak
,
A. Ş.
, 1995, “
Fast Cell-to-Cell Mapping (Path Integration) for Nonlinear White Noise and Poisson Driven Systems
,”
Struct. Saf.
,
17
, pp.
151
165
.
18.
Iwankiewicz
,
R.
, and
Nielsen
,
S. R. K.
, 2000, “
Solution Techniques for Pulse Problems in Non-Linear Stochastic Dynamics
,”
Probab. Eng. Mech.
0266-8920,
15
, pp.
25
36
.
19.
Wojtkiewicz
,
S. F.
,
Johnson
,
E. A.
,
Bergman
,
L. A.
,
Spencer
,
B. F.
, Jr.
, and
Grigoriu
,
M.
, 1999, “
Stochastic Response to Additive Gaussian and Poisson White Noises
,”
Stochastic Structural Dynamics, Proceedings of the Fourth International Conference
,
B. F.
Spencer
, Jr.
, and
E. A.
Johnson
, eds.,
Balkema
,
Rotterdam, The Netherlands
, pp.
53
60
.
20.
Wojtkiewicz
,
S. F.
,
Johnson
,
E. A.
,
Bergman
,
L. A.
,
Grigoriu
,
M.
, and
Spencer
,
B. F.
, Jr.
, 1999, “
Response of Stochastic Dynamical Systems Driven by Additive Gaussian and Poisson White Noise: Solution of a Forward Generalized Kolmogorov Equation by a Spectral Finite Difference Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
, pp.
73
89
.
21.
Vasta
,
M.
, 1995, “
Exact Stationary Solution for a Class of Non-Linear Systems Driven by a Non-Normal Delta-Correlated Process
,”
Int. J. Non-Linear Mech.
0020-7462,
30
, pp.
407
418
.
22.
Proppe
,
C.
, 2002, “
The Wong-Zakai Theorem for Dynamical Systems With Parametric Poisson White Noise Excitation
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
1165
1178
.
23.
Proppe
,
C.
, 2003, “
Exact Stationary Probability Density Functions for Non-Linear Systems Under Poisson White Noise Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
557
564
.
24.
Tylikowski
,
A.
, and
Marowski
,
W.
, 1986, “
Vibration of a Non-Linear Single Degree of Freedom System Due to Poissonian Impulse Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
21
, pp.
229
238
.
25.
Grigoriu
,
M.
, 1995, “
Equivalent Linearization for Poisson White Noise Input
,”
Probab. Eng. Mech.
0266-8920,
10
, pp.
45
51
.
26.
Sobiechowski
,
C.
, and
Socha
,
L.
, 2000, “
Statistical Linearization of the Duffing Oscillator Under Non-Gaussian External Excitation
,”
J. Sound Vib.
0022-460X,
231
, pp.
19
35
.
27.
Proppe
,
C.
, 2002, “
Equivalent Linearization of MDOF Systems Under External Poisson White Noise Excitation
,”
Probab. Eng. Mech.
0266-8920,
17
, pp.
393
399
.
28.
Proppe
,
C.
, 2003, “
Stochastic Linearization of Dynamical Systems Under Parametric Poisson White Noise Excitation
,”
Int. J. Non-Lnear Mech.
,
38
, pp.
543
555
.
29.
Iwankiewicz
,
R.
,
Nielsen
,
S. R. K.
, and
Thoft-Christensen
,
P.
, 1990, “
Dynamic Response of Non-Linear Systems to Poisson-Distributed Pulse Trains: Markov Approach
,”
Struct. Saf.
,
8
, pp.
223
238
.
30.
Iwankiewicz
,
R.
, and
Nielsen
,
S. R. K.
, 1992, “
Dynamic Response of Non-Linear Systems to Poisson-Distributed Random Impulses
,”
J. Sound Vib.
0022-460X,
156
, pp.
407
423
.
31.
Er
,
G. K.
, 1998, “
A New Non-Gaussian Closure Method for the PDF Solution of Non-Linear Random Vibrations
,”
Engineering Mechanics: A Force for the 21st Century, Proceedings of the 12th Engineering Mechanics Conference
,
H.
Murakami
and
J. E.
Luco
, eds.,
ASCE
,
Reston, VA
, pp.
1403
1406
.
32.
Er
,
G. K.
, 1998, “
An Improved Closure Method for Analysis of Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
0924-090X,
17
, pp.
285
297
.
33.
Er
,
G. K.
, and
Iu
,
V. P.
, 1999, “
Probabilistic Solutions to Nonlinear Random Ship Roll Motion
,”
J. Eng. Mech.
0733-9399,
125
, pp.
570
574
.
34.
Er
,
G. K.
, and
Iu
,
V. P.
, 2000, “
Stochastic Response of Base-Excited Coulomb Oscillator
,”
J. Sound Vib.
0022-460X,
233
, pp.
81
92
.
35.
Er
,
G. K.
, 2000, “
The Probabilistic Solutions to Nonlinear Random Vibrations of Multi-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
355
359
.
36.
Er
,
G. K.
, and
Iu
,
V. P.
, 2000, “
A Consistent and Effective Method for Nonlinear Random Oscillations of MDOF Systems
,”
IUTAM Symposium on Recent Developments in Non-Linear Oscillations of Mechanical Systems, Proceedings of the IUTAM Symposium
,
N. V.
Dao
and
E. J.
Kreuzer
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
85
94
.
You do not currently have access to this content.