The elastic solution of a tangentially loaded contact is known as Cerruti’s solution. Since the contact surfaces could be easily discretized in small rectangles of uniform shear stress the elastic problem is usually numerically solved by summation of well known integral solution. For soft metallic materials, metals at high temperature, rough surfaces, or dry contacts with high friction coefficient, the yield stress within the material could be easily exceeded even at low normal load. This paper presents the effect of a cuboid of uniform plastic strain in a half-space on the tangential displacement of a surface point. The analytical solutions are first presented. All analytical expressions are then validated by comparison with the finite element method. It is found that the influence coefficients for tangential displacements are of the same order of magnitude as the ones describing the normal displacement (Jacq et al., 2002, “Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code,” ASME J. Tribol., 124(4), pp. 653–667). This result is of great importance for frictional contact problem when coupling the normal and tangential behaviors in the elastic-plastic regime, such as stick-slip problems, and also for metals and alloys with low or moderate yield stress.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
2.
Ciavarella
,
M.
, 1998, “
The Generalized Cattaneo Partial Slip Plane Contact Problem I—Theory
,”
Int. J. Solids Struct.
0020-7683,
35
(
18
), pp.
2349
2362
.
3.
Ciavarella
,
M.
, 1998, “
The Generalized Cattaneo Partial Slip Plane Contact Problem II—Examples
,”
Int. J. Solids Struct.
0020-7683,
35
(
18
), pp.
2363
2378
.
4.
Hills
,
D. A.
,
Nowell
,
D.
, and
O’Connor
,
J. J.
, 1988, “
On the Mechanics of Fretting Fatigue
,”
Wear
0043-1648,
125
(
1–2
), pp.
129
146
.
5.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
(
4
), pp.
653
667
.
6.
Sainsot
,
P.
,
Jacq
,
C.
, and
Nélias
,
D.
, 2002, “
A Numerical Model for Elastoplastic Rough Contact
,”
Comput. Model. Eng. Sci.
1526-1492,
3
, pp.
497
506
.
7.
Boucly
,
V.
,
Nélias
,
D.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
(
2
), pp.
355
364
.
8.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
494
502
.
9.
Nélias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-In Model
,”
ASME J. Tribol.
0742-4787,
128
(
2
), pp.
236
244
.
10.
Popescu
,
G.
,
Morales-Espejel
,
G. E.
,
Wemekamp
,
B.
, and
Gabelli
,
A.
, 2006, “
An Engineering Model for Three-Dimensional Elastic-Plastic Rolling Contact Analyses
,”
Tribol. Trans.
1040-2004,
49
, pp.
387
399
.
11.
Popescu
,
G.
,
Gabelli
,
A.
,
Morales-Espejel
,
G. E.
, and
Wemekamp
,
B.
, 2006, “
Micro-Plastic Material Model and Residual Fields in Rolling Contact
,”
J. ASTM Int.
1546-962X,
3
, pp.
1
12
.
12.
Boucly
,
V.
,
Nélias
,
D.
, and
Green
,
I.
, 2007, “
Modeling of the Rolling and Sliding Contact Between Two Asperities
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
235
245
.
13.
Nélias
,
D.
,
Antaluca
,
E.
,
Boucly
,
V.
, and
Cretu
,
S.
, 2007, “
A 3D Semi-Analytical Model for Elastic-Plastic Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
129
(
4
), pp.
761
771
.
14.
Nélias
,
D.
,
Antaluca
,
E.
, and
Boucly
,
V.
, 2007, “
Rolling of an Elastic Ellipsoid Upon an Elastic-Plastic Flat
,”
ASME J. Tribol.
0742-4787,
129
(
4
), pp.
791
800
.
15.
Chen
,
W. W.
,
Wang
,
Q. J.
,
Liu
,
Y.
,
Chen
,
W.
,
Cao
,
J.
,
Xia
,
C.
,
Talwar
,
R.
, and
Lederich
,
R.
, 2007, “
Analysis and Convenient Formulas for Elasto-Plastic Contacts of Nominally Flat Surfaces: Average Gap, Contact Area Ratio, and Plastically Deformed Volume
,”
Tribol. Lett.
1023-8883,
28
(
1
), pp.
27
38
.
16.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q. J.
, 2008, “
Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
0021-8936,
75
(
1
), p.
011022
.
17.
Chen
,
W. W.
,
Wang
,
Q. J.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
, 2008, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
0021-8936,
75
(
2
), p.
021021
.
18.
Antaluca
,
E.
, and
Nélias
,
D.
, 2008, “
Contact Fatigue Analysis of a Dented Surface in a Dry Elastic-Plastic Circular Point Contact
,”
Tribol. Lett.
1023-8883,
29
(
2
), pp.
139
153
.
19.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Method
,”
Wear
0043-1648,
231
, pp.
206
219
.
20.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
21.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
, 1996, “
A Universal Integration Algorithm for Rate-Dependant Elastoplasticity
,”
Comput. Struct.
0045-7949,
59
, pp.
1173
1184
.
22.
Gallego
,
L.
,
Nélias
,
D.
, and
Jacq
,
C.
, 2006, “
A Comprehensive Method to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
476
485
.
23.
Gallego
,
L.
, and
Nélias
,
D.
, 2007, “
Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions
,”
ASME J. Tribol.
0742-4787,
129
(
3
), pp.
528
535
.
24.
Gallego
,
L.
,
Fulleringer
,
B.
,
Deyber
,
S.
, and
Nélias
,
D.
, 2007, “
Multiscale Computation of Fretting Wear at the Blade/Disk Interface
,”
Proceedings of the Fifth International Symposium on Fretting Fatigue (ISFF5)
, Montreal, QC, Canada, Apr. 21–23.
25.
Panagiotopoulos
,
P. D.
, 1975, “
A Nonlinear Programming Approach to the Unilateral Contact and Friction-Boundary Value Problem in the Theory of Elasticity
,”
Ing.-Arch.
0020-1154,
44
(
6
), pp.
421
432
.
26.
Chiu
,
Y. P.
, 1978, “
On the Stress Field and Surface Deformation in a Half-Space With a Cuboidal Zone in Which Initial Strains Are Uniform
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
302
306
.
27.
Liu
,
S.
, and
Wang
,
Q.
, 2005, “
Elastic Fields Due to Eigenstrains in a Half-Space
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
871
878
.
28.
Cerruti
,
V.
, 1882, “
Ricerche intorno all’equilibrio de corpi elastici isotropi
,”
Rend. Accad. Naz. Lincei
0392-7881,
3
(
13
), pp.
81
122
.
29.
Love
,
A. E. H.
, 1952,
A Treatise on the Mathematical Theory of Elasticity
, 4th ed.,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.