A finite element dynamic instability analysis of stiffened shell panels with cutout subjected to uniform in-plane harmonic edge loading along the two opposite edges is presented in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners, respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. Bolotin method is applied to analyze the dynamic instability regions. Numerical results of convergence studies are presented and comparison is made with the published results from literature. The effects of various parameters such as shell geometry, radius of curvature, cutout size, stiffening scheme, and dynamic load factors are considered in dynamic instability analysis of stiffened shell panels with cutout. The free vibration and static stability (buckling) results are also presented. With the consideration of radius of curvatures the panels reduce from deep shell case to shallow shell case and finally become flat plate.

1.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden-day, Inc.
,
San Francisco, California, USA
.
2.
Evan-Iwanowski
,
R. M.
, 1965, “
On the Parametric Response of Structures
,”
Appl. Mech. Rev.
,
18
(
9
), pp.
699
702
. 0003-6900
3.
Ibrahim
,
R. A.
, 1978, “
Parametric Vibration Part III. Current Problems (1)
,”
Shock Vib. Dig.
0583-1024,
10
(
3
), pp.
41
57
.
4.
Simitses
,
G. J.
, 1987, “
Instability of Dynamically Loaded Structures
,”
Appl. Mech. Rev.
,
40
(
10
), pp.
1403
1408
. 0003-6900
5.
Hutt
,
J. M.
, and
Salam
,
A. E.
, 1971, “
Dynamic Stability of Plates by Finite Element Method
,”
J. Eng. Mech.
,
97
, pp.
897
899
. 0733-9399
6.
Lam
,
K. Y.
, and
Ng
,
T. Y.
, 1997, “
Dynamic Stability of Cylindrical Shells Subjected to Conservative Periodic Axial Loads Using Different Shell Theories
,”
J. Sound Vib.
0022-460X,
207
, pp.
497
520
.
7.
Lam
,
K. Y.
, and
Ng
,
T. Y.
, 1999, “
Parametric Resonance of Cylindrical Shells by Different Shell Theories
,”
AIAA J.
0001-1452,
37
, pp.
137
140
.
8.
Ng
,
T. Y.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1998, “
Parametric Resonance of a Rotating Cylindrical Shell Subjected to Periodic Axial Load
,”
J. Sound Vib.
0022-460X,
214
, pp.
513
529
.
9.
Ng
,
T. Y.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1998, “
Dynamic Stability of Cross-Ply Laminated Composite Cylindrical Shells
,”
Int. J. Mech. Sci.
0020-7403,
40
(
8
), pp.
805
823
.
10.
Ng
,
T. Y.
,
Hua
,
L. I.
,
Lam
,
K. Y.
, and
Loy
,
C. T.
, 1999, “
Parametric Instability of Conical Shell by Generalized Differential Quadrature Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
819
837
.
11.
Sahu
,
S. K.
, and
Datta
,
P. K.
, 2001, “
Parametric Instability of Doubly Curved Panels Subjected to Non-Uniform Harmonic Loading
,”
J. Sound Vib.
0022-460X,
240
(
1
), pp.
117
129
.
12.
Ng
,
T. Y.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
, 1999, “
Dynamic Stability of Cylindrical Panels With Transverse Shear Effect
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
3483
3496
.
13.
Troitsky
,
M. S.
, 1976,
Stiffened Plates Bending Stability and Vibration
,
Elsevier Scientific
,
Amsterdam
.
14.
Aksu
,
G.
, 1982, “
Free Vibration of Stiffened Plates Including the Effect of In Plane Inertia
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
49
, pp.
206
212
.
15.
Mukherjee
,
A.
, and
Mukhopadhyay
,
M.
, 1988, “
Finite Element Free Vibration of Eccentrically Stiffened Plates
,”
Comput. Struct.
0045-7949,
30
(
6
), pp.
1303
1317
.
16.
Mukhopadhyay
,
M.
, 1989, “
Vibration and Stability Analysis of Stiffened Plates by Semi-Analytic Finite Difference Method, Part I: Consideration of Bending Displacements Only
,”
J. Sound Vib.
0022-460X,
130
(
1
), pp.
27
39
.
17.
Nayak
,
A. N.
, and
Bandyopadhyay
,
J. N.
, 2002, “
On Free Vibration of Stiffened Shallow Shells
,”
J. Sound Vib.
0022-460X,
255
(
2
), pp.
357
382
.
18.
Olson
,
M. D.
, and
Hazell
,
C. R.
, 1977, “
Vibration Studies of Some Integral Rib-Stiffened Plates
,”
J. Sound Vib.
0022-460X,
50
, pp.
43
61
.
19.
Samanta
,
A.
, and
Mukhopadhyay
,
M.
, 2004, “
Free Vibration of Stiffened Shells by the Finite Element Technique
,”
Eur. J. Mech. A/Solids
,
23
, pp.
159
179
. 0022-460X
20.
Zeng
,
H.
, and
Bert
,
C. W.
, 2001, “
A Differential Quadrature Analysis of Vibration for Rectangular Stiffened Plates
,”
J. Sound Vib.
0022-460X,
241
(
2
), pp.
247
252
.
21.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill Kogakusha
,
Tokyo, Japan
.
22.
Thomas
,
J.
, and
Abbas
,
B. H. A.
, 1983, “
Vibration Characteristics and Dynamic Stability of Stiffened Plates
,” Structure, Structural Dynamic and Material Conference, Collection of Technical Papers, Part 2, AIAA, pp.
277
285
.
23.
Duffield
,
R. C.
, and
Willems
,
N.
, 1972, “
Parametric Resonance of Stiffened Rectangular Plates
,”
ASME J. Appl. Mech.
,
39
, pp.
217
226
. 0021-8936
24.
Merrit
,
R. G.
, and
Willems
,
N.
, 1973, “
Parametric Resonance of Skew Stiffened Plates
,”
ASME J. Appl. Mech.
,
40
, pp.
439
444
. 0021-8936
25.
Mermertas
,
M.
, and
Belek
,
H. T.
, 1991, “
Dynamic Stability of Radially Stiffened Annular Plates
,”
Comput. Struct.
0045-7949,
40
(
3
), pp.
651
657
.
26.
Liao
,
C. L.
, and
Cheng
,
C. R.
, 1994, “
Dynamic Stability of Stiffened Laminated Composite Plates and Shells Subjected to In Plane Pulsating Forces
,”
J. Sound Vib.
0022-460X,
174
(
3
), pp.
335
351
.
27.
Srivastava
,
A. K. L.
,
Datta
,
P. K.
, and
Sheikh
,
A. H.
, 2002, “
Vibration and Dynamic Stability of Stiffened Plates Subjected to In-Plane Harmonic Edge Loading
,”
Int. J. Struct. Stab. Dyn.
,
2
(
2
), pp.
185
206
. 0219-4554
28.
Srivastava
,
A. K. L.
,
Datta
,
P. K.
, and
Sheikh
,
A. H.
, 2003, “
Dynamic Instability of Stiffened Plates Subjected to Non-Uniform In-Plane Edge Loading
,”
J. Sound Vib.
0022-460X,
262
, pp.
1171
1189
.
29.
Sahu
,
S. K.
, and
Datta
,
P. K.
, 2002, “
Dynamic Stability of Curved Panels With Cutouts
,”
J. Sound Vib.
0022-460X,
251
(
4
), pp.
683
696
.
30.
Srivastava
,
A. K. L.
,
Datta
,
P. K.
, and
Sheikh
,
A. H.
, 2003, “
Dynamic Instability of Stiffened Plates With Cutout Subjected to In-Plane Uniform Edge Loadings
,”
Int. J. Struct. Stab. Dyn.
,
3
(
3
), pp.
391
403
. 0219-4554
31.
Ahmad
,
S.
, 1970, “
Analysis of Thick and Thin Shell Structures by Curved Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
2
, pp.
419
451
.
32.
Zienkiewicz
,
O. C.
, 1977,
The Finite Element Method
,
Tata McGraw-Hill
,
New Delhi
.
33.
Bathe
,
K. J.
, 1996,
Finite Element Procedure
,
Prentice-Hall of India Private Limited
,
New Delhi
.
34.
Ferguson
,
G. H.
, and
Clark
,
R. D.
, 1979, “
A Variable Thickness Curved Beam and Shell Stiffener With Shear Deformation
,”
Int. J. Numer. Methods Eng.
0029-5981,
14
, pp.
581
592
.
35.
Timoshenko
,
S. P.
, and
Goodier
,
J. M.
, 1951,
Theory of Elasticity
,
McGraw-Hill Kogakusha
,
Tokyo, Japan
.
36.
Corr
,
R. B.
, and
Jennings
,
A.
, 1976, “
A Simultaneous Iteration Algorithm for Symmetric Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
10
, pp.
647
663
.
37.
Long
,
B. R.
, 1968, “
Vibration of Eccentrically Stiffened Plates
,”
Shock and Vib. Bulletin
,
38
, pp.
45
53
.
38.
Prusty
,
B. G.
, 2001, “
Static, Dynamic, Buckling and Failure Analysis of Composite Stiffened Shell Structures, A Finite Element Approach
,” Ph.D. thesis, Indian Institute of Technology, Kharagpur, India.
39.
Ko
,
W. L.
, 1998, “
Mechanical and Thermal Buckling of Rectangular Plates with Different Central Cutouts
,” NASA/TM, Technical Paper No. 206542.
You do not currently have access to this content.