A time-derivative preconditioned system of equations suitable for the numerical simulation of inviscid multicomponent and multiphase flows at all speeds is described. The system is shown to be hyperbolic in time and remains well conditioned in the incompressible limit, allowing time marching numerical methods to remain an efficient solution strategy. It is well known that the application of conservative numerical methods to multicomponent flows containing sharp fluid interfaces will generate nonphysical pressure and velocity oscillations across the component interface. These oscillations may lead to stability problems when the interface separates fluids with large density ratio, such as water and air. The effect of which may lead to the requirement of small physical time steps and slow subiteration convergence for implicit time marching numerical methods. At low speeds the use of nonconservative methods may be considered. In this paper a characteristic-based preconditioned nonconservative method is described. This method preserves pressure and velocity equilibrium across fluid interfaces, obtains density ratio independent stability and convergence, and remains well conditioned in the incompressible limit of the equations. To extend the method to transonic and supersonic flows containing shocks, a hybrid formulation is described, which combines a conservative preconditioned Roe method with the nonconservative preconditioned characteristic-based method. The hybrid method retains the pressure and velocity equilibrium at component interfaces and converges to the physically correct weak solution. To demonstrate the effectiveness of the nonconservative and hybrid approaches, a series of one-dimensional multicomponent Riemann problems is solved with each of the methods. The solutions are compared with the exact solution to the Riemann problem, and stability of the numerical methods are discussed.

1.
Kiris
,
C.
,
Kwak
,
D.
,
Chan
,
W.
, and
Housman
,
J.
, 2008, “
High Fidelity Simulations for Unsteady Flow Through Turbopumps and Flowliners
,”
Comput. Fluids
,
37
, pp.
536
546
. 0045-7930
2.
Kiris
,
C.
,
Chan
,
W.
,
Kwak
,
D.
, and
Housman
,
J.
, “
Time-Accurate Computational Analysis of the Flame Trench
,”
ICCFD5
, Seoul, Korea, Jul. 7–11.
3.
J.
Housman
,
C.
Kiris
, and
M.
Hafez
, “Preconditioned Methods for Simulations of Low Speed Compressible Flows,” Comput. Fluids (to be published). 0029-5981
4.
Merkle
,
C. L.
, and
Choi
,
Y. H.
, 1985, “
Computation of Low Speed Compressible Flows With Time-Marching Methods
,”
Int. J. Numer. Methods Eng.
,
25
, pp.
292
311
. 0029-5981
5.
Turkel
,
E.
, 1987, “
Preconditioning Methods for Solving Incompressible and Low-Speed Compressible Equations
,”
J. Comput. Phys.
0021-9991,
72
, pp.
277
298
.
6.
Karni
,
S.
, 1994, “
Multicomponent Flow Calculations by a Consistent Primitive Algorithm
,”
J. Comput. Phys.
0021-9991,
112
, pp.
31
43
.
7.
Abgrall
,
R.
, 1996, “
How to Prevent Pressure Oscillations in Multicomponent Flows
,”
J. Comput. Phys.
0021-9991,
125
, pp.
150
160
.
8.
Karni
,
S.
, 1996, “
Hybrid Multifluid Algorithms
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
17
, pp.
1019
1039
.
9.
Jenny
,
P.
,
Muller
,
B.
, and
Thomann
,
H.
, 1997, “
Correction of Conservative Euler Solvers for Gas Mixtures
,”
J. Comput. Phys.
0021-9991,
132
, pp.
91
107
.
10.
Abgrall
,
R.
, and
Karni
,
S.
, 2001, “
Computations of Compressible Multifluids
,”
J. Comput. Phys.
0021-9991,
169
, pp.
594
623
.
11.
Chakravarthy
,
S. R.
,
Anderson
,
D. A.
, and
Salas
,
M. D.
, 1980, “
The Split-Coefficient Matrix Method for Hyperbolic Systems of Gas Dynamics
,”
18th AIAA Aerospace Sciences Meeting
, Paper No. AIAA-80-0268.
12.
Wren
,
G. P.
,
Ray
,
S. E.
,
Aliabadi
,
S. K.
, and
Tezduyar
,
T. E.
, 1997, “
Simulation of Flow Problems With Moving Mechanical Components, Fluid-Structure Interactions and Two-Fluid Interfaces
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
1433
1448
. 0271-2091
13.
Chorin
,
A. J.
, 1967, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
0021-9991,
2
, pp.
12
26
.
14.
Kwak
,
D.
,
Chang
,
J.
,
Shanks
,
S.
, and
Chakravarthy
,
S. R.
, 1986, “
A Three-Dimensional Incompressible Navier-Stokes Solver Using Primitive Variables
,”
AIAA J.
,
24
, pp.
390
396
. 0001-1452
15.
Merkle
,
C. L.
, and
Athavale
,
M.
, 1987, “
Time-Accurate Unsteady Incompressible Flow Algorithms Based on Artificial Compressibility
,” AIAA Paper No. 87-1137.
16.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
, 1989, “
Numerical Solution of the Incompressible Navier-Stokes Equations for Steady-State and Time-Dependent Problems
,”
27th AIAA Aerospace Sciences Meeting
, Reno, NV, Paper No. AIAA-89-0463.
17.
Rehm
,
R. G.
, and
Baum
,
H. R.
, 1978, “
The Equations of Motion for Thermally Driven Buoyant Flows
,”
J. Res. Natl. Bur. Stand.
,
83
, pp.
297
308
. 0160-1741
18.
Klainerman
,
S.
, and
Majda
,
A.
, 1981, “
Singular Limits of Quasilinear Hyperbolic Systems With Large Parameters and the Incompressible Limit of Compressible Fluids
,”
Commun. Pure Appl. Math.
0010-3640,
34
, pp.
481
524
.
19.
Klainerman
,
S.
, and
Majda
,
A.
, 1982, “
Compressible and Incompressible Fluids
,”
Commun. Pure Appl. Math.
0010-3640,
35
, pp.
629
653
.
20.
Briley
,
W. R.
,
McDonald
,
H.
, and
Shamroth
,
S. J.
, 1983, “
A Low Mach Number Euler Formulation and Application to Time-Iterative LBI Schemes
,”
AIAA J.
,
21
, pp.
1467
1469
. 0001-1452
21.
Viviand
,
H.
, 1985, “
Pseudo-Unsteady Systems for Steady Inviscid Calculations
,”
Numerical Methods for the Euler Equations of Fluid Dynamics
,
F.
Angrand
et al., eds.,
SIAM
,
Philadelphia, PA
.
22.
Guerra
,
J.
, and
Gustafsson
,
B.
, 1986, “
A Numerical Method for Incompressible and Compressible Flow Problems With Smooth Solutions
,”
J. Comput. Phys.
0021-9991,
63
, pp.
377
397
.
23.
Lindau
,
J. W.
,
Kunz
,
R. F.
,
Venkateswaran
,
S.
, and
Merkle
,
C. L.
, 2001, “
Development of a Fully-Compressible Multi-Phase Reynolds-Averaged Navier-Stokes Model
,”
15th AIAA Computational Fluid Dynamics Conference
, Anaheim, CA, Paper No. AIAA-2001-2648.
24.
Edwards
,
J. R.
, 2001, “
Toward Unified CFD Simulation of Real Fluid Flows
,”
15th AIAA Computational Fluid Dynamics Conference
, Anaheim, CA, Paper No. AIAA-2001-2524.
25.
Li
,
D.
,
Venkateswaran
,
S.
,
Lindau
,
J. W.
, and
Merkle
,
C. L.
, 2005, “
A Unified Computational Formulation for Multi-Component and Multi-Phase Flows
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Paper No. AIAA-2005-1391.
26.
Edwards
,
J. R.
, and
Liou
,
M. -S.
, 2006, “
Simulation of Two-Phase Flows Using Low-Diffusion Shock-Capturing Schemes
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Paper No. AIAA-2006-1288.
27.
Neaves
,
M. D.
, and
Edwards
,
J. R.
, 2006, “
All-Speed Time-Accurate Underwater Projectile Caculations Using a Precoditioned Algorithm
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
284
296
.
28.
McDaniel
,
K. S.
,
Edwards
,
J. R.
, and
Neaves
,
M. D.
, 2006, “
Simulation of Projectile Penetration Into Water and Sand
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Paper No. AIAA-2006-1289.
29.
Housman
,
J.
, 2007, “
Time-Derivative Preconditioning Method for Multicomponent Flow
,” Ph.D. thesis, University of California Davis, Davis, CA.
30.
Lax
,
P. D.
, and
Wendroff
,
B.
, 1960, “
Systems of Conservation Laws
,”
Commun. Pure Appl. Math.
0010-3640,
13
, pp.
217
237
.
31.
Moretti
,
G.
, 1979, “
The Lambda-Scheme
,”
Comput. Fluids
0045-7930,
7
, pp.
191
205
.
32.
van Leer
,
B.
,
Lee
,
W. T.
, and
Roe
,
P. L.
, 1991, “
Characteristic Time-Stepping or Local Preconditioning of the Euler Equations
,”
AIAA Computational Fluid Dynamics Conference
, Honolulu, HI, Paper No. AIAA-91-1552-CP.
33.
Roe
,
P. L.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
0021-9991,
43
, pp.
357
372
.
34.
Lombard
,
C. K.
,
Bardina
,
J.
,
Vankatapathy
,
E.
, and
Oliger
,
J.
, 1983, “
Multi-Dimensional Formulation of CSCM—An Upwind Flux Difference Eigenvector Split Method for the Compressible Navier-Stokes Equations
,”
Sixth AIAA Computational Fluid Dynamics Conference
, Danvers, MA, Paper No. AIAA-83-1895.
35.
Daywitt
,
J. E.
,
Szostowski
,
D. J.
, and
Anderson
,
D. A.
, 1983, “
A Split-Coefficient/Locally Monotonic Scheme for Multishocked Supersonic Flow
,”
AIAA J.
,
21
, pp.
871
880
. 0001-1452
36.
Harabetian
,
E.
, and
Pego
,
R.
, 1993, “
Nonconservative Hybrid Shock Capturing Schemes
,”
J. Comput. Phys.
,
105
, pp.
1
13
. 0021-9991
37.
Toro
,
E. F.
, 1995, “
On Adaptive Primitive-Conservative Schemes for Conservation Laws
,”
Sixth International Symposium on Computational Fluid Dynamics: A Collection of Technical Papers
, Vol.
3
,
M. M.
Hafez
, ed., pp.
1288
1293
.
38.
Quirk
,
J. J.
, 1993, “
Godunov-Type Schemes Applied to Detonation Flows
,”
NASA/ICASE
Contractor Report No. 191447.
39.
Ivings
,
M. J.
,
Causon
,
D. M.
, and
Toro
,
E. F.
, 1997, “
On Hybrid High Resolution Upwind Methods for Multicomponent Flows
,”
Z. Angew. Math. Mech.
0044-2267,
77
, pp.
645
668
.
40.
Chang
,
C. -H.
, and
Liou
,
M. -S.
, 2005, “
A Conservative Compressible Multifluid Model for Multiphase Flow: Shock-Interface Interaction Problems
,”
17th AIAA Computational Fluid Dynamics Conference
, Paper No. AIAA 2005-5344.
You do not currently have access to this content.