In this paper we present effective preconditioning techniques for solving the nonsymmetric systems that arise from the discretization of the Navier–Stokes equations. These linear systems are solved using either Krylov subspace methods or the Richardson scheme. We demonstrate the effectiveness of our techniques in handling time-accurate as well as steady-state solutions. We also compare our solvers with those published previously.

1.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
, 1993, “
Parallel Finite-Element Computation of 3D Flows
,”
Computer
0018-9162,
26
(
10
), pp.
27
36
.
2.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
, and
Mittal
,
S.
, 1994, “
Massively Parallel Finite Element Simulation of Compressible and Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
119
, pp.
157
177
. 0045-7825
3.
Mittal
,
S.
, and
Tezduyar
,
T.
, 1994, “
Massively Parallel Finite Element Computation of Incompressible Flows Involving Fluid-Body Interactions
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
112
, pp.
253
282
.
4.
Mittal
,
S.
, and
Tezduyar
,
T. E.
, 1995, “
Parallel Finite Element Simulation of 3D Incompressible Flows: Fluid-Structure Interactions
,”
Int. J. Numer. Methods Fluids
0271-2091,
21
, pp.
933
953
.
5.
Johnson
,
A.
, and
Tezduyar
,
T.
, 1999, “
Advanced Mesh Generation and Update Methods for 3D Flow Simulations
,”
Comput. Mech.
0178-7675,
23
, pp.
130
143
.
6.
Kalro
,
V.
, and
Tezduyar
,
T. E.
, 2000, “
A Parallel 3D Computational Method for Fluid-Structure Interactions in Parachute Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
321
332
. 0045-7825
7.
Stein
,
K.
,
Benney
,
R.
,
Kalro
,
V.
,
Tezduyar
,
T. E.
,
Leonard
,
J.
, and
Accorsi
,
M.
, 2000, “
Parachute Fluid-Structure Interactions: 3-D Computation
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
373
386
. 0045-7825
8.
Tezduyar
,
T.
, and
Osawa
,
Y.
, 2001, “
Fluid-Structure Interactions of a Parachute Crossing the Far Wake of an Aircraft
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
717
726
. 0045-7825
9.
Ohayon
,
R.
, 2001, “
Reduced Symmetric Models for Modal Analysis of Internal Structural-Acoustic and Hydroelastic-Sloshing Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3009
3019
.
10.
Tezduyar
,
T.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
, 2004, “
Space–time techniques for finite element computation of flows with moving boundaries and interfaces
,”
Proceedings of the Third International Congress on Numerical Methods in Engineering and Applied Science
,
S.
Gallegos
,
I.
Herrera
,
S.
Botello
,
F.
Zarate
, and
G.
Ayala
, eds., Monterrey, Mexico, CD-ROM.
11.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T.
, 2004, “
Influence of Wall Elasticity on Image-Based Blood Flow Simulation
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
70
, pp.
1224
1231
(in Japanese).
12.
van Brummelen
,
E.
, and
de Borst
,
R.
, 2005, “
On the Nonnormality of Subiteration for a Fluid-Structure Interaction Problem
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
27
, pp.
599
621
.
13.
Michler
,
C.
,
van Brummelen
,
E.
, and
de Borst
,
R.
, 2005, “
An Interface Newton–Krylov Solver for Fluid-Structure Interaction
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
1189
1195
.
14.
Gerbeau
,
J. -F.
,
Vidrascu
,
M.
, and
Frey
,
P.
, 2005, “
Fluid-Structure Interaction in Blood Flow on Geometries Based on Medical Images
,”
Comput. Struct.
0045-7949,
83
, pp.
155
165
.
15.
Tezduyar
,
T.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
, 2006, “
Space-Time Finite Element Techniques for Computation of Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
2002
2027
. 0045-7825
16.
Tezduyar
,
T.
,
Sathe
,
S.
, and
Stein
,
K.
, 2006, “
Solution Techniques for the Fully-Discretized Equations in Computation of Fluid-Structure Interactions With the Space-Time Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5743
5753
. 0045-7825
17.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T.
, 2006, “
Computer Modeling of Cardiovascular Fluid-Structure Interactions With the Deforming-Spatial-Domain/Stabilized Space-Time Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1885
1895
. 0045-7825
18.
Tezduyar
,
T.
,
Sathe
,
S.
,
Stein
,
K.
, and
Aureli
,
L.
, 2006, “
Modeling of Fluid-Structure Interactions With the Space-Time Techniques
,”
Fluid-Structure Interaction
(
Lecture Notes in Computational Science and Engineering
),
H. -J.
Bungartz
and
M.
Schafer
, eds.,
Springer
,
New York
, Vol.
53
, pp.
50
81
.
19.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T.
, 2006, “
Fluid-Structure Interaction Modeling of Aneurysmal Conditions With High and Normal Blood Pressures
,”
Comput. Mech.
,
38
, pp.
482
490
. 0178-7675
20.
Dettmer
,
W.
, and
Peric
,
D.
, 2006, “
A Computational Framework for Fluid-Structure Interaction: Finite Element Formulation and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5754
5779
. 0045-7825
21.
Bazilevs
,
Y.
,
Calo
,
V.
,
Huhes
,
T.
, and
Zhang
,
Y.
, 2006, “
Isogeometric Fluid-Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
0178-7675,
38
, pp.
310
322
.
22.
Khurram
,
R.
, and
Masud
,
A.
, 2006, “
A Multiscale/Stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid-Structure Interaction
,”
Comput. Mech.
0178-7675,
38
, pp.
403
416
.
23.
Kuttler
,
U.
,
Forster
,
C.
, and
Wall
,
W.
, 2006, “
A Solution for the Incompressibility Dilemma in Partitioned Fluid-Structure Interaction With Pure Dirichlet Fluid Domains
,”
Comput. Mech.
,
38
, pp.
417
429
. 0178-7675
24.
Lohner
,
R.
,
Cebral
,
J.
,
Yang
,
C.
,
Baum
,
J.
,
Mestreau
,
E. L.
, and
Soto
,
O.
, 2006, “
Extending the Range of Applicability of the Loose Coupling Approach for FSI Simulations
,”
Fluid-Structure Interaction
(
Lecture Notes in Computational Science and Engineering
),
H. -J.
Bungartz
and
M.
Schafer
, eds.,
Springer
,
New York
, Vol.
53
, pp.
82
100
.
25.
Bletzinger
,
K. -U.
,
Wuchner
,
R.
, and
Kupzok
,
A.
, 2006, “
Algorithmic Treatment of Shells and Free Form-Membranes in FSI
,”
Fluid-Structure Interaction
(
Lecture Notes in Computational Science and Engineering
),
H. -J.
Bungartz
and
M.
Schafer
, eds.,
Springer
,
New York
, Vol.
53
, pp.
336
355
.
26.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T.
, 2007, “
Influence of Wall Elasticity in Patient-Specific Hemodynamic Simulations
,”
Comput. Fluids
0045-7930,
36
, pp.
160
168
.
27.
Masud
,
A.
,
Bhanabhagvanwala
,
M.
, and
Khurram
,
R.
, 2007, “
An Adaptive Mesh Rezoning Scheme for Moving Boundary Flows and Fluid-Structure Interaction
,”
Comput. Fluids
,
36
, pp.
77
91
. 0045-7930
28.
Sawada
,
T.
, and
Hisada
,
T.
, 2007, “
Fuid-Structure Interaction Analysis of the Two Dimensional Flag-in-Wind Problem by an Interface Tracking ALE Finite Element Method
,”
Comput. Fluids
,
36
, pp.
136
146
. 0045-7930
29.
Wall
,
W.
,
Genkinger
,
S.
, and
Ramm
,
E.
, 2007, “
A Strong Coupling Partitioned Approach for Fluid-Structure Interaction With Free Surfaces
,”
Comput. Fluids
,
36
, pp.
169
183
. 0045-7930
30.
Tezduyar
,
T.
, and
Sathe
,
S.
, 2007, “
Modeling of Fluid-Structure Interactions With the Space-Time Finite Elements: Solution Techniques
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
855
900
.
31.
Tezduyar
,
T.
,
Sathe
,
S.
,
Cragin
,
T.
,
Nanna
,
B.
,
Conklin
,
B.
,
Pausewang
,
J.
, and
Schwaab
,
M.
, 2007, “
Modeling of Fluid-Structure Interactions With the Space-Time Finite Elements: Arterial Fluid Mechanics
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
901
922
.
32.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T.
, 2007, “
Numerical Investigation of the Effect of Hypertensive Blood Pressure on Cerebral Aneurysm — Dependence of the Effect on the Aneurysm Shape
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
995
1009
.
33.
Tezduyar
,
T.
,
Sathe
,
S.
,
Schwaab
,
M.
, and
Conklin
,
B.
, 2007, “
Arterial Fluid Mechanics Modeling With the Stabilized Space-Time Fluid-Structure Interaction Technique
,”
Int. J. Numer. Methods Fluids
0271-2091,
57
(
5
), pp.
601
629
.
34.
Tezduyar
,
T.
,
Sathe
,
S.
,
Pausewang
,
J.
,
Schwaab
,
M.
,
Christopher
,
J.
, and
Crabtree
,
J.
, 2008, “
Interface Projection Techniques for Fluid–Structure Interaction Modeling With Moving-Mesh Methods
,”
Comput. Mech.
0178-7675,
43
(
1
), pp.
39
49
.
35.
Tezduyar
,
T.
,
Sathe
,
S.
,
Pausewang
,
J.
,
Schwaab
,
M.
,
Christopher
,
J.
, and
Crabtree
,
J.
, 2008, “
Fluid-Structure Interaction Modeling of Ringsail Parachutes
,”
Comput. Mech.
0178-7675,
43
(
1
), pp.
133
142
.
36.
Bazilevs
,
Y.
,
Calo
,
V.
,
Hughes
,
T.
, and
Zhang
,
Y.
, 2008, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms and Computations
,” unpublished.
37.
Baggag
,
A.
, and
Sameh
,
A.
, 2004, “
A Nested Iterative Scheme for Indefinite Linear Systems in Particulate Flows
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
1923
1957
. 0045-7825
38.
Tezduyar
,
T.
, and
Sathe
,
S.
, 2005, “
Enhanced-Discretization Successive Update Method (EDSUM)
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
633
654
.
40.
Golub
,
G.
, and
Wathen
,
A.
, 1998, “
An Iteration for Indefinite Systems and Its Application to the Navier–Stokes Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
19
, pp.
530
539
.
41.
Elman
,
H.
, 1999, “
Preconditioning for the Steady-State Navier–Stokes Equations With Low Viscosity
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
(
4
), pp.
1299
1316
.
42.
Silvester
,
D.
,
Elman
,
H.
,
Kay
,
D.
, and
Wathen
,
A.
, 2001, “
Efficient Preconditioning of the Linearized Navier–Stokes Equations for Incompressible Flow
,”
J. Comput. Appl. Math.
0377-0427,
128
, pp.
261
279
43.
Elman
,
H.
,
Silvester
,
D.
, and
Wathen
,
A.
, 2005,
Finite Elements and Fast Iterative Solvers
,
Oxford University Press
,
New York
.
44.
Elman
,
H.
,
Howle
,
V.
,
Shadid
,
J.
,
Shuttleworth
,
R.
, and
Tuminaro
,
R.
, 2006, “
Block Preconditioners Based on Approximate Commutators
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
27
(
5
), pp.
1651
1668
.
45.
Vainikko
,
E.
, and
Graham
,
I.
, 2004, “
A Parallel Solver for PDE Systems and Application to the Incompressible Navier–Stokes Equations
,”
Appl. Numer. Math.
0168-9274,
49
(
1
), pp.
97
116
.
46.
van der Vorst
,
H.
, 1992, “
BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
13
(
2
), pp.
631
644
.
47.
Schenk
,
O.
,
Gärtner
,
K.
,
Fichtner
,
W.
, and
Stricker
,
A.
, 2001, “
PARDISO: A High-Performance Serial and Parallel Sparse Linear Solver in Semiconductor Device Simulation
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
18
(
1
), pp.
69
78
.
48.
Axelsson
,
O.
, and
Kolotilina
,
L.
, 2005, “
Diagonally Compensated Reduction and Related Preconditioning Methods
,”
Numer. Linear Algebra Appl.
1070-5325,
1
(
2
), pp.
155
177
.
49.
Saad
,
Y.
, and
Schultz
,
M.
, 1986, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
856
869
.
50.
Cuthill
,
E.
, and
McKee
,
J.
, 1969, “
Reducing the Bandwidth of Sparse Symmetric Matrices
,”
Proceedings of the 1969 24th National Conference
,
ACM
,
New York, NY
, pp.
157
172
.
51.
Saad
,
Y.
, 1990, “
SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations
,”
NASA Ames Research Center
, Technical Report No. 90-20.
52.
Manguoglu
,
M.
,
Sameh
,
A. H.
,
Tezduyar
,
T. E.
, and
Sathe
,
S.
, 2008, “
A Nested Iterative Scheme for Computation of Incompressible Flows in Long Domains
,”
Comput. Mech.
0178-7675,
43
(
1
), pp.
73
80
.
You do not currently have access to this content.